

KASP Markers for Efficiency in *Musa* Improvement

Brigitte Uwimana, IITA – Sendusu Trushar Shah, IITA- Nairobi Ivan Arinaitwe, NARO/NARL - Kawanda Delphine Amah, IITA- Ibadan

December 12, 2023

IITA is a member c

Musa improvement

Matooke (3x - AAA) Uganda (Namulonge) *East Africa*

Mchare (2*x* - AA) Tanzania (Arusha) *East Africa*

Plantain (3x - AAB)

Nigeria (Ibadan) Central and West Africa

IITA is a member of the CGIAR System Organization.

www.iita.org | www.cgiar.org

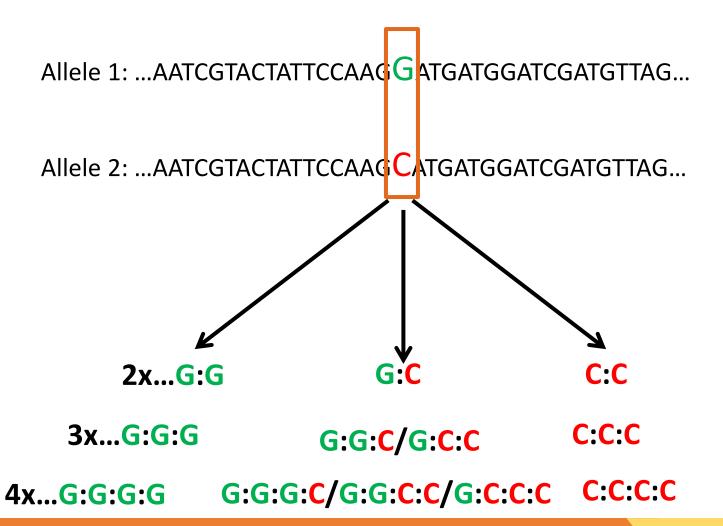
Traits in the Target Product Profiles

Resistance to pests and diseases

- Weevils
- Nematodes
- Fusarium wilt
- Black Sigatoka
- Banana bacterial wilt Banana bunchy top

Agronomic traits

- Yield traits
- Fruit filling
- Number of hands
- Number of fingers
- Ratooning
- Parthenocarpy
- Bunch orientation
- Plant stature

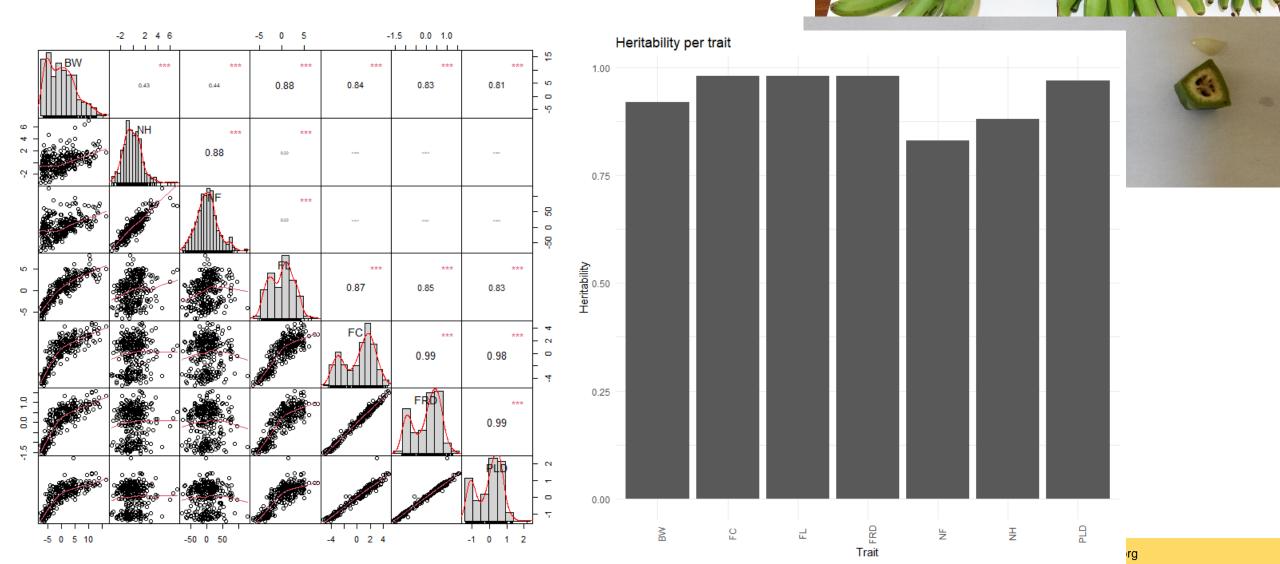

Consumer's traits (quality)

- Taste
- Colour
- Texture
- pVAC

KASP markers for MAS

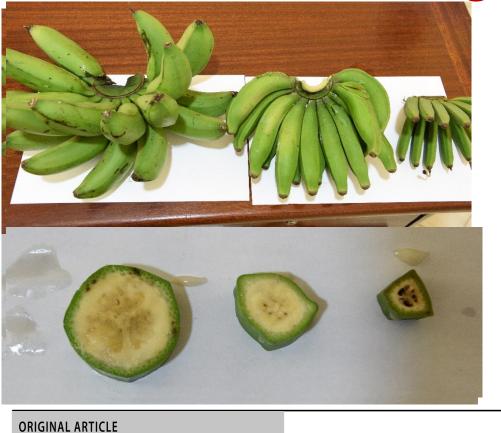
SNPs in Polyploids

1. KASP markers for MAS: fruit-filling



IITA is a member of the CGIAR System Organization.

CGIAR

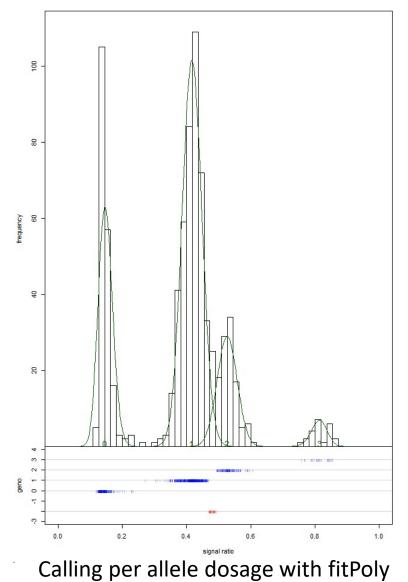

IITA

Fruit-filling = fruit circumference, fruit diameter, pulp diameter

QTL for fruit filling

(d)01601-

Check fo updates 12 c3_11254045 c12_22387 10 8 6 2 2 3 8 9 10 5 6 4


Association genetics of bunch weight and its component traits in East African highland banana (*Musa* spp. AAA group)

 $Moses Nyine^{1,7} \cdot Brigitte Uwimana^1 \cdot Violet Akech^1 \cdot Allan Brown^2 \cdot Rodomiro Ortiz^3 \cdot Jaroslav Doležel^4 \cdot Control State St$

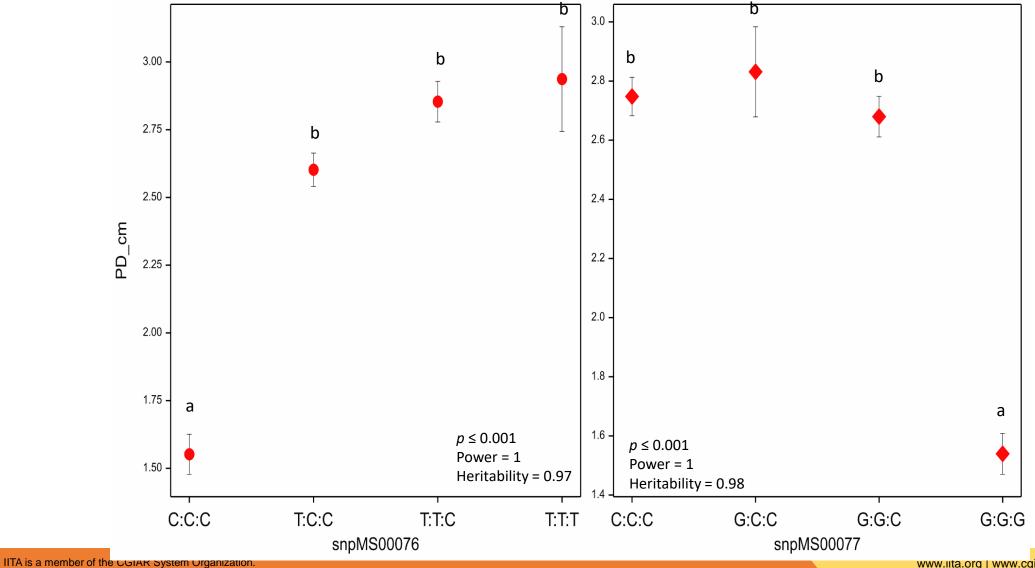
KASPs for the SNPs associated with fruit-filling

snpMS00001 ject number 102.00 LGC Genomics CCGTTGCGTGCCGGT[C/G] 1.59 G:G G:C C:C Bad Short Dupe Over Uncallable 🔵 0 8 Standard calling as 2x

QTL analysis

KASP assay verification in the QTL mapping population (37 SNPs in 94 3x Matooke and hybrids)

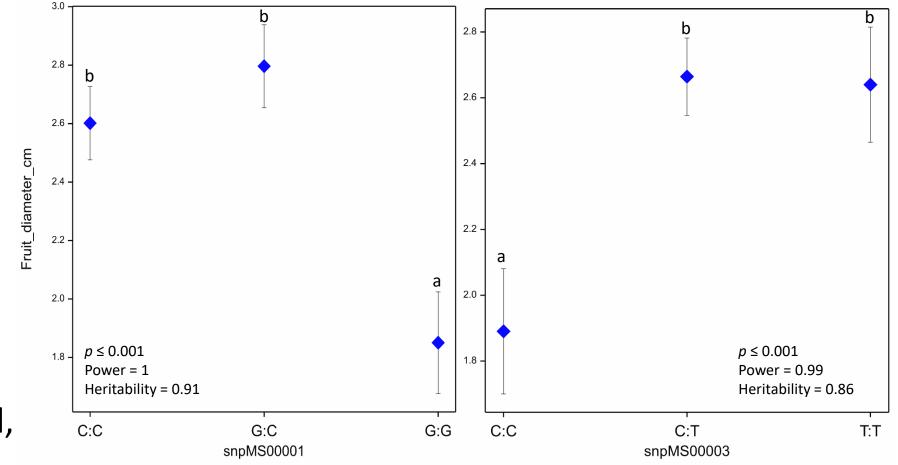
> KASP validation in a related population (24 SNPs in 376 Matooke and hybrids)


Allele calling by allele dosage with fitPoly

ANOVA and heritability (pulp diameter)

IITA is a member of the CGIAR System Organization.

KASP validation and MAS in 3x Matooke hybrids


IITA

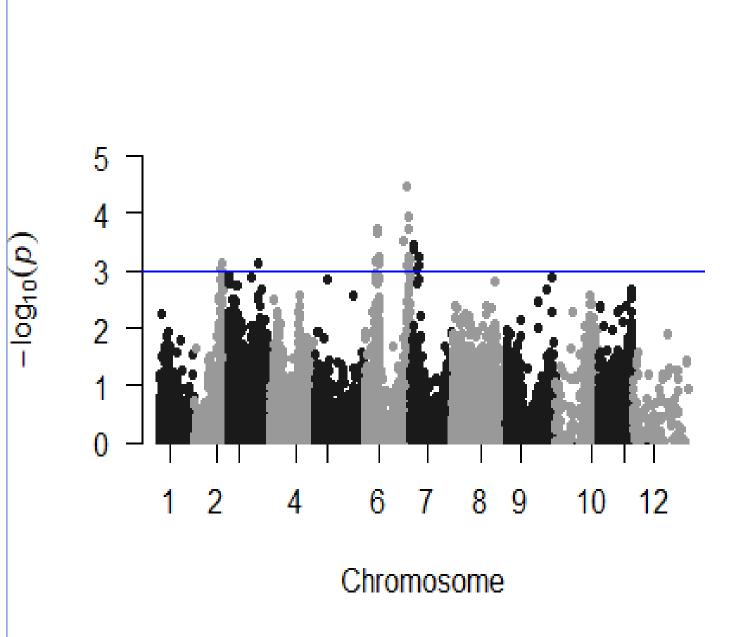
www.iita.org | www.cgiar.org

Validation in other genetic backgrounds

- 53 Mchare landraces and hybrids (EET 1)
- Fruit diameter
- Mchare EET2 genotyped, phenotyping ongoing
- Plantain PYT and EET genotyped, phenotyping ongoing
- 2x parents genotyped, phenotyping ongoing

2. Banana Xanthomonas Wilt (Xanthomonus vasicola pv. musacearum)

- Prevalent in East and Central Africa
- Affected plants produce non-edible fruits
- Resistance found in Musa balbisiana
- Resistance limited in *M. acuminata*
- So far resistance identified in *M. acuminata* subsp. *zebrina*
- https://doi.org/10.1111/ppa.12945



QTL for Banana *Xanthomonas* Wilt

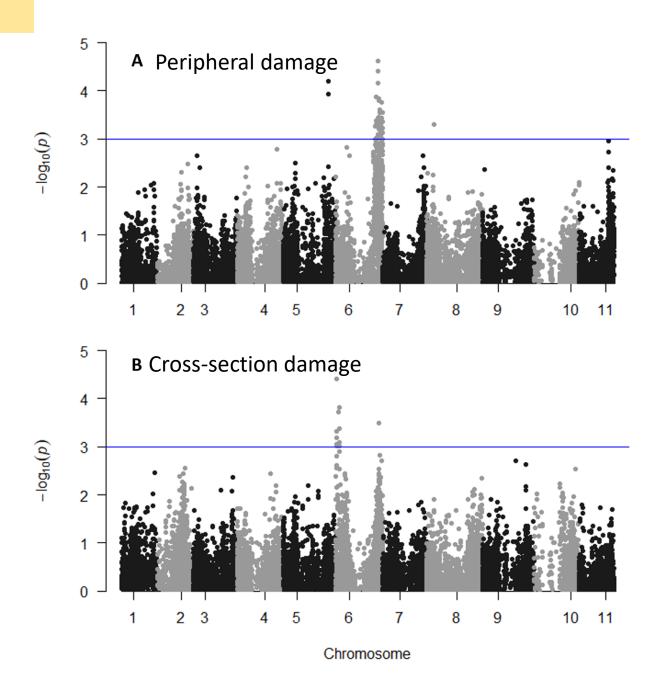
- 'Monyet' (4x) x 'Kokopo' (2x)
- 147 3x progeny phenotyped
- 0.62 heritability AUDPC
- 18,009 SNPs DArTseq
- Continuous mapping QTL analysis

26 KASP markers verified for BXW

Intertek SNP ID	SNP	Trait
snpMS00179	G/A	maxAUDPC for Xvm
snpMS00180	A/G	maxAUDPC for Xvm
snpMS00181	A/G	maxAUDPC for Xvm
snpMS00182	A/G	maxAUDPC for Xvm
snpMS00183	T/A	maxAUDPC for Xvm
snpMS00184	G/T	maxAUDPC for Xvm
snpMS00185	A/G	maxAUDPC for Xvm
snpMS00186	G/T	maxAUDPC for Xvm
snpMS00187	G/T	maxAUDPC for Xvm
snpMS00188	A/G	maxAUDPC for Xvm
snpMS00189	T/C	maxAUDPC for Xvm
snpMS00190	A/T	maxAUDPC for Xvm
snpMS00191	G/A	maxAUDPC for Xvm
snpMS00192	A/G	maxAUDPC for Xvm
snpMS00193	G/C	maxAUDPC for Xvm
snpMS00194	T/C	maxAUDPC for Xvm
snpMS00195	G/T	maxAUDPC for Xvm
snpMS00196	G/T	maxAUDPC for Xvm
snpMS00197	T/C	maxAUDPC for Xvm
snpMS00198	A/G	maxAUDPC for Xvm
snpMS00199	C/T	maxAUDPC for Xvm
snpMS00200	G/C	maxAUDPC for Xvm
snpMS00201	T/A	maxAUDPC for Xvm
snpMS00202	A/G	maxAUDPC for Xvm
snpMS00203	C/A	maxAUDPC for Xvm
snpMS00204	A/C	maxAUDPC for Xvm

3. Banana weevils (*Cosmopolites* sordidus)

- One of the two major pests of bananas
- Matooke and plantains susceptible
- Gets worse over time as the weevil population builds up
- Up to 100% yield loss due to mats disappearance
- QTL mapping in 2 unrelated bi-parental populations



• 'Monyet' x 'Kokopo'

ITT

- Continuous mapping in 3x
- <u>https://doi.org/10.3389/fpls.2021.753241</u>

Intertek SNP ID *)	SNP	Trait
snpMS00100	C/A	logit_PD weevil resistance
snpMS00101	G/A	logit_PD weevil resistance
snpMS00102	C/T	logit_PD weevil resistance
snpMS00103	T/C	logit_PD weevil resistance
snpMS00104	T/C	logit_PD weevil resistance
snpMS00105	C/T	logit_PD weevil resistance
snpMS00106	C/T	logit_PD weevil resistance
snpMS00107	A/T	logit_PD weevil resistance
snpMS00108	A/C	logit_PD weevil resistance
snpMS00109	G/T	logit_PD weevil resistance
snpMS00110	A/C	logit_PD weevil resistance
snpMS00111	G/A	logit_PD weevil resistance
snpMS00112	C/G	logit_PD weevil resistance
snpMS00113	C/T	logit_PD weevil resistance
snpMS00114	G/C	logit_PD weevil resistance
snpMS00115	G/T	logit_PD weevil resistance
snpMS00116	G/C	logit_PD weevil resistance
snpMS00117	T/A	logit_PD weevil resistance
snpMS00118	A/G	logit_PD weevil resistance
snpMS00119	G/T	logit_PD weevil resistance
snpMS00120	T/A	logit_PD weevil resistance
snpMS00121	A/C	logit_PD weevil resistance
snpMS00122	C/A	logit_PD weevil resistance
snpMS00123	T/C	logit_PD weevil resistance
snpMS00124	C/T	logit_PD weevil resistance
snpMS00125	A/G	logit_PD weevil resistance
snpMS00126	G/A	logit_PD weevil resistance
snpMS00127	G/T	logit_PD weevil resistance
snpMS00128	G/A	logit_PD weevil resistance
snpMS00129	G/A	logit_PD weevil resistance
snpMS00130	A/T	logit_PD weevil resistance
snpMS00131	A/G	logit_PD weevil resistance
snpMS00132	T/G	logit_PD weevil resistance
snpMS00133	A/T	logit_PD weevil resistance
snpMS00134	G/A	logit_PD weevil resistance
snpMS00135	T/G	logit_PD weevil resistance
snpMS00136	C/A	logit_PD weevil resistance
snpMS00137	A/G	logit_PD weevil resistance
snpMS00138	A/C	logit_PD weevil resistance
snpMS00139	G/T	logit_PD weevil resistance
snpMS00140	T/C	logit_PD weevil resistance
snpMS00141	T/C	logit_PD weevil resistance
snpMS00142	G/C	logit_PD weevil resistance
snpMS00143	A/T	logit_PD weevil resistance
snpMS00144	C/G	logit_TXD weevil resistance
snpMS00145	G/T	logit_TXD weevil resistance
snpMS00146	A/T	logit_TXD weevil resistance
snpMS00147	G/C	logit_TXD weevil resistance
snpMS00148	A/T	logit_TXD weevil resistance
snpMS00149	A/C	logit_TXD weevil resistance
snpMS00150	G/A	logit_TXD weevil resistance
snpMS00151	A/G	logit_TXD weevil resistance
snpMS00152	G/T	logit_TXD weevil resistance
snpMS00153	C/A	logit_TXD weevil resistance
snpMS00154	G/C	logit TXD weevil resistance
	-/-	-0_

44 + 11 KASP markers verified for weevil resistance

4. Fusarium wilt (Fusarium oxysporum f.sp. cubense)

- Foc R1 affects Mchare production
- Does not affect Matooke and Plantain landraces
- Susceptibility can be introduced through breeding
- Pre-emptive breeding for Foc TR4
- Phenotyping for TR4 can't be done in Africa
- Partnership with Wageningen University, KeyGene and Queensland University
- <u>https://www.doi.org/10.3390/pathogens120</u> 20289
- <u>https://www.doi.org/10.3390/pathogens120</u>
 <u>60820</u>

sn	Intertek SNP ID	SNP	Trait
1	snpMS00155	C/A	Rhizome discoloration due to Foc TR4/STR4
2	snpMS00156	T/G	Rhizome discoloration due to Foc TR4/STR4
3	snpMS00157	T/A	Rhizome discoloration due to Foc TR4/STR4
4	snpMS00158	G/C	Rhizome discoloration due to Foc TR4/STR4
5	snpMS00159	C/T	Rhizome discoloration due to Foc TR4/STR4
6	snpMS00160	G/A	Rhizome discoloration due to Foc TR4/STR4
7	snpMS00161	T/G	Rhizome discoloration due to Foc TR4/STR4
8	snpMS00162	G/A	Rhizome discoloration due to Foc TR4/STR4
9	snpMS00163	G/A	Rhizome discoloration due to Foc TR4/STR4
10	snpMS00164	A/G	Rhizome discoloration due to Foc TR4/STR4
11	snpMS00165	A/T	Rhizome discoloration due to Foc TR4/STR4
12	snpMS00166	A/T	Rhizome discoloration due to Foc TR4/STR4
13	snpMS00167	C/G	Rhizome discoloration due to Foc TR4/STR4
14	snpMS00168	G/A	Rhizome discoloration due to Foc TR4/STR4
15	snpMS00169	T/C	Rhizome discoloration due to Foc TR4/STR4
16	snpMS00170	T/C	Rhizome discoloration due to Foc TR4/STR4
17	snpMS00171	T/C	Rhizome discoloration due to Foc TR4/STR4
18	snpMS00172	C/T	Rhizome discoloration due to Foc TR4/STR4
19	snpMS00173	C/T	Rhizome discoloration due to Foc TR4/STR4
20	snpMS00174	G/C	Rhizome discoloration due to Foc TR4/STR4
21	snpMS00175	A/G	Rhizome discoloration due to Foc TR4/STR4
22	snpMS00176	G/A	Rhizome discoloration due to Foc TR4/STR4
23	snpMS00177	C/T	Rhizome discoloration due to Foc TR4/STR4
24	snpMS00178	C/T	Rhizome discoloration due to Foc TR4/STR4

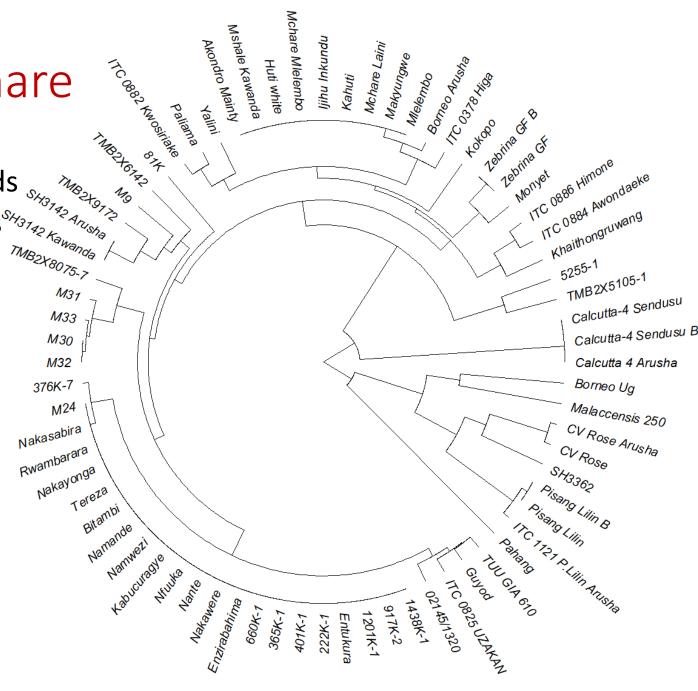
24 KASP markers verified for Foc TR4

Markers for QC/QA

QA/QC markers for the A genome

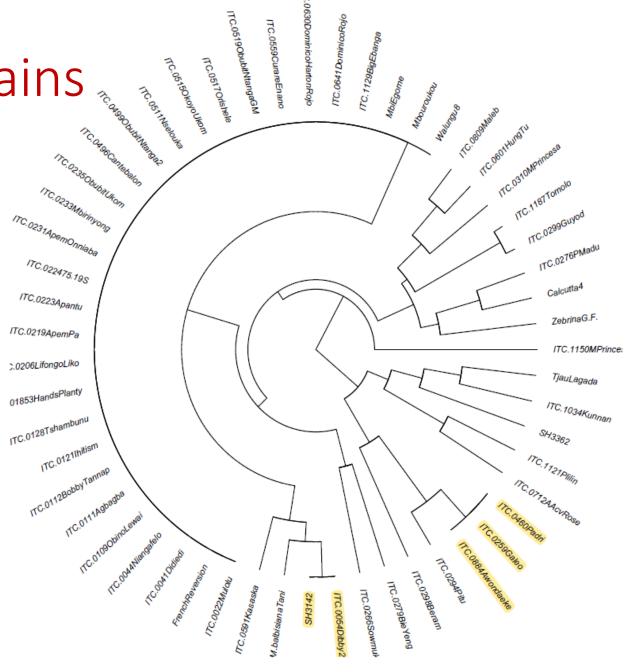
- Re-sequence data of 18 genotypes
- DH Pahang reference genome
- 5.5M SNPs

• 5 markers x 11 chromosome


apjack - 1.21.02.04

<u>A</u>nalysis <u>D</u>ata <u>H</u>elp

	-1 1 1			+ + + +						
			$\vdash \mathcal{H} \subset \mathcal{H}$							
		<u> </u>	$(\land \land$	1177	12/11					
TC1468 Kahuti	1.00 T A C C G	1.00 G T C T A	1.00 C C A C A 1.	00 C T G T C 1	.00 C C T T A	1.00 C G A A A	1.00 G C T T G	1.00 G A T G C 1.0	0 T A A C T 1.0	0 T A T A A 1.00 T A C /
TC1466 Nshonowa	0.71 T A C C A		0.71 C T A C A 0.	71 C C G T C 0	.71 T C T C G					1 T A T A A 0.71 T A C (
TC1437 TMB2x 9128-3	0.64 A A C C G	0.64 A T G C A	0.64 A T G C A 0.	64 T C G T G O	.64 C C C T A	0.64 C G A A G	0.64 G C T T A	0.64 G T T A T 0.6	4 T A A T T 0.6	54 T A T A A 0.64 C G C (
TC0299 Guyod	0.56 A A C C G	0.56 A T C C A	0.56 C C A C C 0.	56 T T A T C 0	.56 C T T T A	0.56 T A G T G	0.56 G G T C G	0.56 G A T G C 0.5	6 C A G C C 0.5	6 T G G G C 0.56 C A T (
TC0281 Akondro Mainty	0.56 T A C C G	0.56 A T C C T	0.56 C C G A C 0.	56 C C A T C 0	.56 T C T C G	0.56 C G A T G	0.56 T C T T G	0.56 A T G G T 0.5	6 T T A T T 0.5	6 T G G A A 0.56 T G C (
TC0654 Petite Naine	0.53 T A C C A	0.53 G C G T T	0.53 A T A A C 0.	53 C T G T G O	.53 T T C T G	0.53 C G G A G	0.53 G G A T A	0.53 G A G G C 0.5	3 T A G C T 0.5	3 C G G A C 0.53 T G T /
TC0425 SH-3142	0.51 T G C C A	0.51 G C C C A	0.51 A T A C A 0.	51 C T A T C 0	.51 T T C T G	0.51 T A G A A	0.51 G G T T G	0.51 G T T A T 0.5	1 C A G T T 0.5	1 C A G G C 0.51 C A T /
TC0712 AAcv Rose	0.49 A A T T G	0.49 G C G T A	0.49 A T G A A 0.	49 C C G G C 0	.49 T C T C A	0.49 C G A A G	0.49 T C A T A	0.49 G A G A C 0.4	9 T T G C C 0.4	9 C G T G A 0.49 C A T /
TC1121 Pisang Lilin	0.49 A G T T A	0.49 G T C T A	0.49 C T A A C 0.	49 C C A G G 0	.49 C C C C A	0.49 C A G A A	0.49 T C T T A	0.49 A A G G C 0.4	9 T T A T C 0.4	9 T A T G A 0.49 C G T /
TC1187 Tomolo	0.49 A G T T G	0.49 G T G C T	0.49 C C G C C 0.	49 T T G G C 0	.49 C T T T A	0.49 C A A T A	0.49 T G T C G	0.49 G A T A T 0.4	9 C T G C C 0.4	9 T A T G C 0.49 T A T (
TC1254 Paka	0.47 T A C C A	0.47 A C C T T	0.47 C T G A C 0.	47 T T A G G 0	.47 T T C C G	0.47 T A A T A	0.47 G C A T G	0.47 G A T A T 0.4	7 C A G T T 0.4	TCAGAA0.47 TAC
TC0653 Pisang Mas	0.45 A G T C A	0.45 A T C C T	0.45 A T G C C 0.	45 T T G G C 0	.45 T C T C A	0.45 T A A A G	0.45 G G A T A	0.45 G A T A C 0.4	5 T A A T C 0.4	5 T A G A C 0.45 C G T /
TC0966 Zebrina (G.F.)	0.44 T A T T A	0.44 A C G T T	0.44 C T A C A 0.	44 C C G G C 0	.44 C C T T A	0.44 T A A A G	0.44 G G T C A	0.44 A T G A T 0.4	4 T T A C C 0.4	4 C G G G C 0.44 C G C (
FC1354 Enzirabahima	0.36 A G C C A	0.36 G C G C T	0.36 A C G A A 0.	36 T C G G G 0	.36 C C T T G	0.36 T A G A A	0.36 G G A C A	0.36 G T T A C 0.3	6 C T G T T 0.3	6 T G T G C 0.36 C A T (
IC0253 Borneo	0.36 T G T T G	0.36 A T G C T	0.36 C C A C A 0.	36 T T A G G 0						6 C G T G C 0.36 T G T /
FC0249 Calcutta 4	0.35 A G T T G	0.35 G C C C T	0.35 A C A A C 0.							5 C A G G A 0.35 T G T /
IC0591 Kasaska	0.33 A A T T A	0.33 A T G T T								3 C G G A C 0.33 C A C /
TC0766 Paliama	0.31 T G T T A	0.31 A C G T A	0.31 A C A A C 0.	31 T C A T C O	.31 C T T C G	0.31 T A G T A	0.31 T C T C G	0.31 A T G G T 0.3	1 C T G T C 0.3	1 C A T G C 0.31 C G C (


Results: Matooke and Mchare

- • 2x landrace Mchare and hybrids SH3742 Kawanda
- 4x matooke-derived parents
- 2x parents
- 99.96% reproducibility
- 29 SNPs verified

KASPs for QA/QC in plantains

- All 55 KASP assays
- 376 samples
 - Landrace plantains
 - 2x accessions
 - Hybrids
 - 1 Balbisiana
- 24 KASP markers successful
- 13 KASPs amplified in the B-genome
- Need for B-genome-specific SNPs

www.iita.org | www.cgiar.org

Transforming African Agriculture CGIAR

B-genome specific KASPs for QA/QC in plantains

- Plantain genome (Institute of Experimental Botany)
- B-specific super-scaffolds
- From 3428 SNPs to 55 SNPs (5 x 11)
- Verification in 94 genotypes
 - Landrace plantains (AAB)
 - AB accessions
 - BB (M. balbisiana) accessions
 - AA controls

sn	SNP ID	Alternative ID	SNP*
1			T/C
2			A/C
3			G/A
4			т/с
5			A/G
6			G/A
7			G/A
8			С/Т
9			A/G
10			т/С
11			C/T
12			A/G
13	•		т/С
14			с/т
15			C/T
16			G/A
17			C/T
18			T/C
19			G/A
20			G/T
21			G/A
22			A/G
23			C/T
24			G/A
25	snpMS00229		A/G
26	snpMS00230		T/C
27	snpMS00231	musaB_QC_snp_chr06B_5979616	C/T
28	snpMS00232	musaB_QC_snp_chr06B_16104175	G/A
29	snpMS00233	musaB_QC_snp_chr06B_20177651	G/A
30	snpMS00234	musaB_QC_snp_chr06B_22820524	G/A
31	snpMS00235	musaB_QC_snp_chr07B_745259	G/C
32	snpMS00236	musaB_QC_snp_chr07B_2938033	C/T
33	snpMS00237	musaB_QC_snp_chr07B_15576714	C/T
34	snpMS00238	musaB_QC_snp_chr07B_24910853	G/A
35			C/T
36			T/G
37			A/G
38			A/C
39	snpMS00243	musaB_QC_snp_chr08B_23629516	C/T
40			C/T
41			A/G
42			A/G
43			G/A
44			C/T
45			C/T
46	•		C/T
47	snpMS00251	musaB_QC_snp_chr10B_10586783	G/A
40	cmm1(C002E2	$m_{\rm H} = 0.0$ cm $m_{\rm H} = 0.0000000000000000000000000000000000$	TIC

musaB QC snp chr10B 23222159

T/C

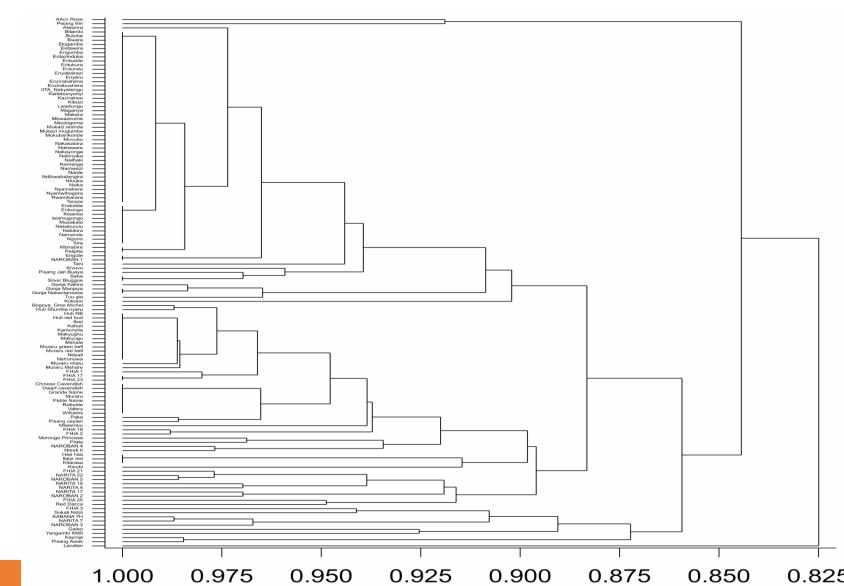
48

snpMS00252

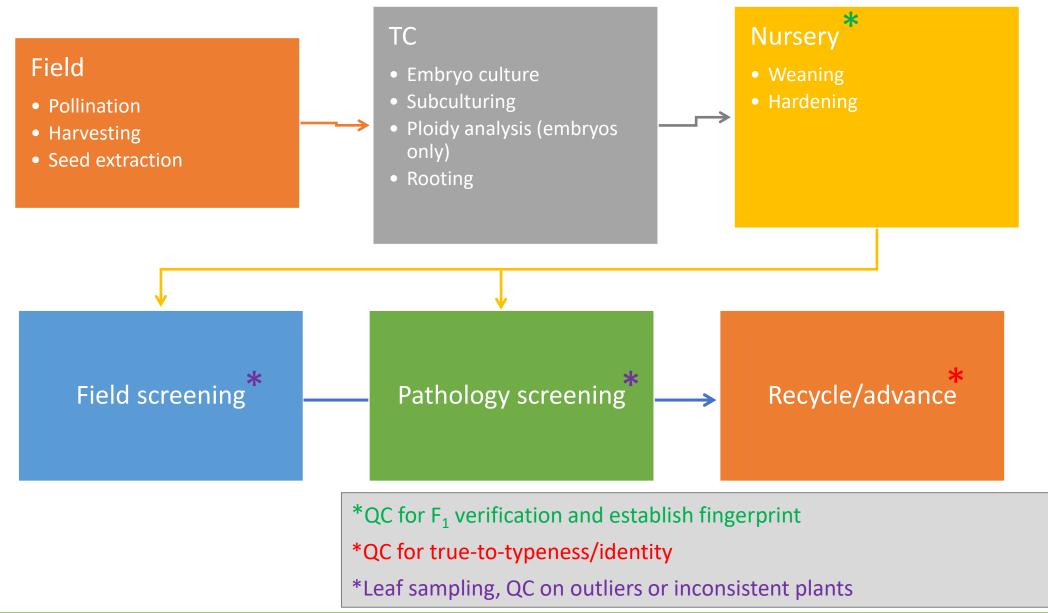
Application: same name but different genotypes?

Genotype	snpMS00018	snpMS00023	snpMS00024	snpMS00046	snpMS00054	snpMS00061	snpMS00066
Calcutta-4_Sendusu_B	T:T	?:?	T:T	C:C	C:C	A:A	A:A
Calcutta-4_Sendusu	T:T	C:C	T:T	C:C	C:C	A:A	A:A
Calcutta 4_Kawanda	C:C	T:T	T:A	G:G	T:C	G:G	G:G
Calcutta 4_Arusha	T:T	?:?	T:T	C:C	C:C	A:A	A:A

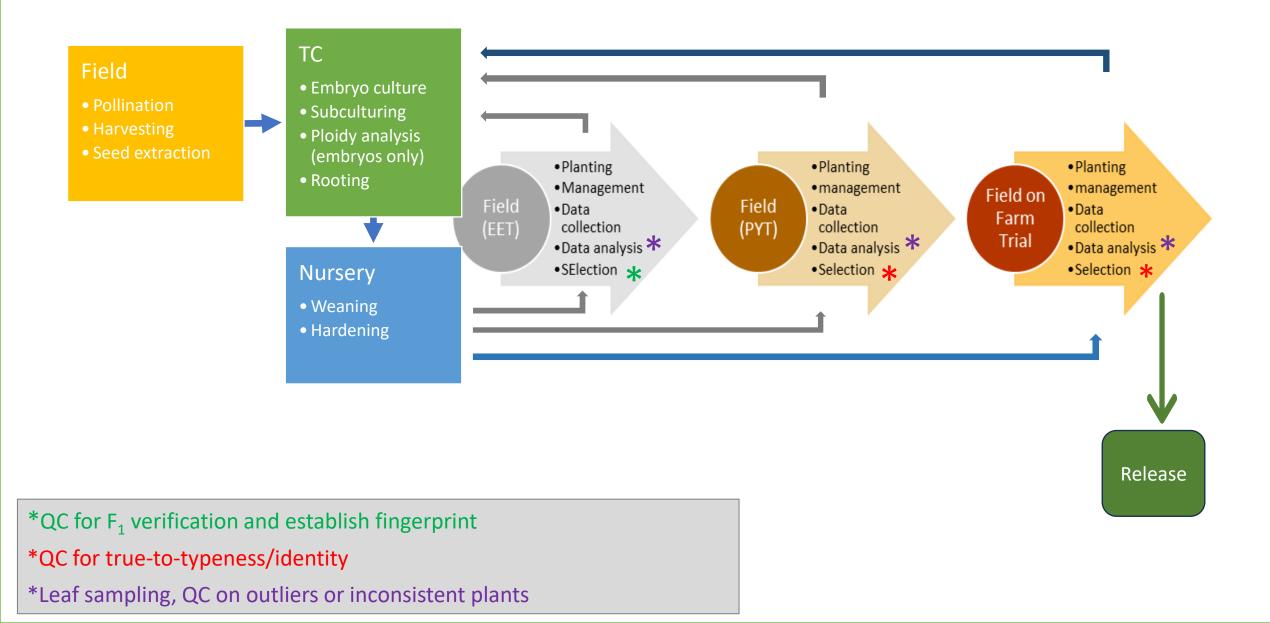
Genotyping of all the shared parents across stations



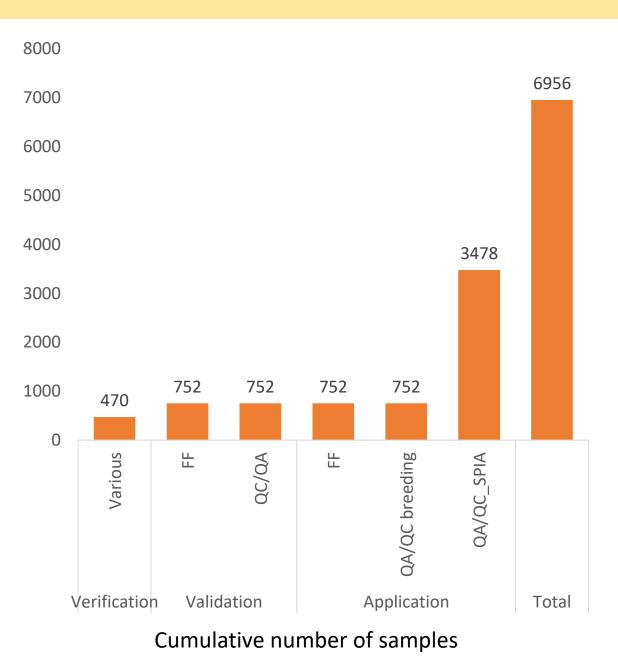
F₁ verification


A	В	С	D	E	F	G	Н	I	J	К	L
Conotino	Fomale Daront	Male Parent	Field	Breeding program	Location	Number of	Considered	Non-expected	As expected	%	Bomark
Genotype	Female Parent	Male Parent	Field	breeding program	Location	markers 🎽	markers 🎽	genotype 🍸	for F1 💌	comformiı 🍸	Remark
25291-S62	2829-62	9128-3	2x-2x EET	IITA Plantain	Ibadan	18	18	0	18	100%	
25291-S62_B	2829-62	9128-3	2x-2x EET	IITA Plantain	Ibadan	19	18	0	18	100%	
IB3985-S3	DT23-15	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	15	14	0	14	100%	
IB3985-S4	DT23-15	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	19	18	0	18	100%	
IB3985-S6	DT23-15	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	18	18	0	18	100%	
IB3966-S1	DT61-15	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	12	11	0	11	100%	few number of markers
IB2400-2	EKUL1142	ITC.0294Pitu	2x-2x EET	IITA Plantain	Ibadan	11	11	0	11	100%	few number of markers
DT49-5	ITC.0259Galeo	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	16	15	0	15	100%	
DT49-7	ITC.0259Galeo	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	17	16	0	16	100%	
DT106-1	ITC.0276PMadu	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	15	10	0	10	100%	few number of markers
2 IB2479-1	ITC.0884Awondaeke	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	18	11	0	11	100%	few number of markers
3 IB2479-8	ITC.0884Awondaeke	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	12	9	0	9	100%	few number of markers
4 ON864-S1	PITA 12	1297-3	PYT trial genotype	IITA Plantain	Ibadan	19	19	0	19	100%	
5 EKUL1142	ZEBRINA GF	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	18	12	0	12	100%	
5 IB4094-S2	1297-3	9128-3	2x-2x EET	IITA Plantain	Ibadan	18	18	1	17	94%	
7 IB4094-S1	DT23-2	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	18	17	1	16	94%	
3 IB4010-S3	DT44-1	ITC.0712 Aacv Rose	2x-2x EET	IITA Plantain	Ibadan	13	10	1	9	90%	few number of markers
B3996-S1	DT61-15	ITC.0259Galeo	2x-2x EET	IITA Plantain	Ibadan	16	15	1	14	93%	
DT23-2	ITC.0259Galeo	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	17	15	1	14	93%	
DT61-15_B	ITC.0259Galeo	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	16	15	1	14	93%	
2 DT51-13	ITC.0259Galeo	Calcutta4	2x-2x EET	IITA Plantain	Ibadan	17	16	1	15	94%	

Impact study on banana varieties in Uganda


- Impact study with SPIA in Uganda
- Reference library of 133 banana genotypes
- Field sampling of 3,290 samples
- Genotyping with 33 QC/QA markers and LD DArTSeq

Application of QA/QC markers Parental Improvement (2x and 4x)


Product Development and Selection

Challenges

- Calling as 2x
- ➤Use of fitPoly for 3x and 4x (extra time)
- Low number of samples per station per season
- ➢Pooling samples across stations
- Need to streamline QA/QC markers in the breeding process

IITA is a member of the CGIAR System Organization.

Conclusion

- KASP markers applied for MAS for fruit-filling
- KASPs verified for more traits, validation in 2024
 - Resistance to weevils
 - Resistance to banana bacterial wilt
 - Resistance to Foc TR4
 - B-genome-specific QA/QC SNPs
- QA/QC needs to be streamlined in the breeding process

Acknowledgements

Rony Swennen Allan Brown **Batte Michael** Valentine Nakato and the pathology team Ademulegun Temitope Moses Nyine Eva Hřibová Jaroslav Doležel

Gnomixx

Boyce Thompson Institute for Plant Research

Genotyping funded by EiB Module 3/ABI-BRI/CtEH

