# Crops to End Hunger Project Update Webinar



Roots, Tubers, and Bananas, Phenotyping and Germplasm Exchange Hub Facilities Upgrade

November 14, 2023



# Importance of RTBs

- Food security: More than three billion people in developing countries consume RTB crops.
- High yielders in terms of calories produced per hectare
- Nutrition security: Often rich in key nutrients such as provitamin A
- Climate resilience: Many RTB crops can be grown with few inputs and often under harsh conditions, yet respond well to intensification
- **Poverty alleviation:** Frequently grown and/or marketed by women for income generation.

# Challenges that are peculiar to RTBs

## • Clonal propagation:

- Low multiplication rate slowing breeding cycle length and scaling of release varieties
- Restricted germplasm exchange within and between regions

## • Bulkiness and perishability:

- Difficult post-harvest management and handling logistics
- Phenotyping of quality traits is a challenge
- Flowering and crossing:
  - Asynchronous flowering, limited number of seeds per cross, ..

# Agenda



Alliance







Kenya Plant Health Inspectorate Service



- Introductions (10 min)
- Upgrading Infrastructure and Facilities for Accelerated Breeding and Genetic Gain in Cassava (Xiaofei Zhang, Ismail Rabbi) (30 min)
- Regional Germplasm Hub for Vegetatively Propagated Crops @ KEPHIS Muguga (Morag Ferguson) (30 min)
- Investing in (sweet)potato breeding networks to mitigate climate change; Upgrading CIP-NARS East Africa potato breeding hub infrastructure (Hannele Lindqvist-Kreuze) (30 min)
- Discussion / Q&A (20 min)



Upgrading Infrastructure and Facilities for Accelerated Breeding and Genetic Gain in Cassava (Xiaofei Zhang, Ismail Rabbi) Upgrading Infrastructure and Facilities for Accelerated Breeding and Genetic Gains in Cassava









## Dilemma:

**Farmers** prefer varieties with erect plant architecture, which produce few flowers as parents in **breeders'** crossing nurseries.

# Solution:

Flower-inducing technology





### **Flower Inducing Technology**

> Front Plant Sci. 2023 May 22:14:1172056. doi: 10.3389/fpls.2023.1172056. eCollection 2023.

#### Flower-inducing technology facilitates speed breeding in cassava

Erika Paola Barinas Rodrmguez <sup>1</sup>, Nelson Morante <sup>2</sup>, Sandra Salazar <sup>2</sup>, Peter T Hyde <sup>3</sup>, Tim L Setter <sup>3</sup>, Peter Kulakow <sup>4</sup>, Johan Steven Aparicio <sup>5</sup>, Xiaofei Zhang <sup>2</sup>

Affiliations - collapse

#### Affiliations

- 1 Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia.
- <sup>2</sup> Cassava Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
- <sup>3</sup> Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
- 4 Cassava Program, International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria.
- 5 Beans Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia.









### **Flower Inducing Technology**



**Photoperiod Extension** induced early flowering by **2-3 months** for progenitors with erect plant architecture.



**Objective 1:** *Deliver improved breeding populations to the CGIAR-NARES cassava breeding networks.* 

(1) Mainstream cassava flower-inducing technology

(2) Establish the *red light* system at IITA and CIAT

(3) Deliver training workshops on *flower-inducing* technology (2024 Sep)

(4) Renovate seed storage rooms (>=20m<sup>2</sup>)











# **Objective 2: Enhance IITA and CIAT breeding hub genomic analysis and selection capacity.**



# **Objective 2: Enhance IITA and CIAT breeding hub genomic analysis and selection capacity.**

<u>Approach</u>: The <u>computing servers</u> will be installed at CIAT and IITA for the breeding teams to perform routine analysis in <u>genomic selection</u> and genome-wide association mapping.



10x coverage for discovering genome-wide markers (8Gb/sample) Populations: Parents, GS, inbreeding, trait discovery ==> 3,000 samples ~24TB data/year

#### **Capacity Building in Genomics-assisted Breeding**











VIB-UGENT CENTER FOR PLANT





**Genomic Selection** training at CIAT, 2023 Oct 25- Nov 2



Quantitative Genetics at CIAT, 2023 Nov 14-18



Alliance

**Bioversity & CIAT** 

Objective 3: Scale RTBfoods protocols that accurately analyze highpriority quality and nutritional traits in cassava.

#### **Equipment:**

- hyperspectral imaging at CIAT
- *freezer* and *freeze dryer* at CIAT for *PPD* samples
  Facility:
- commercial kitchens for boiled cassava at CIAT and IITA
- Renovate facilities at CIAT and IITA for **PPD** evaluation

#### Workshop:

• A one-week *training* on high-priority *quality and nutritional traits* at CIAT and IITA







| .se          |      |       | 10/10/              | 10 <sup>1</sup> / | NO IN | Nd ?   | 10 ju | Nd Jr  | ild 12 | ild ?! | 10.72/  | ild . | 87.    | 87.   | 8. Y. |
|--------------|------|-------|---------------------|-------------------|-------|--------|-------|--------|--------|--------|---------|-------|--------|-------|-------|
| - enotive    |      |       | , <sup>2</sup> 8, 1 |                   |       |        |       | 11/18/ | 18     | 1. 18  | 18      |       |        |       |       |
| Ge           | 70'  | 122 2 | 122 20              | 130 20            | 130 2 | 140 20 | 10 20 | 15 20  | 15 20  | 16/ 20 | 16/12/2 | 161 2 | 111× 2 | 125 2 | 1212  |
| PER183       | 1.23 | 1.98  | 3.21                | 2.14              | 0.10  | 0.74   | ſ .   | 0.27   | 0.55   | 0.15   | 0.09    | 1.52  | 0.58   | 0.63  | 0.98  |
| CPDCR5B-036  | 0.74 | 0.99  | 0.27                | 0.06              |       | 1.31   | 0.03  | 0.21   | 2.14   |        | 1.02    | 1.46  |        |       | 1.03  |
| CPDCR5B-069A | 0.56 | 2.00  | 0.02                | 0.66              | 0.80  | 2.27   |       | 0.86   | 1.10   | 0.49   |         | 0.84  | 1.07   |       | 1.06  |
| CPDCR1B-080  | 0.61 | 0.51  | 0.67                | 1.33              | 1.49  | 2.65   | 0.26  | 1.17   | 0.78   |        | 0.84    | 0.17  | 0.65   | 2.06  | 1.07  |
| CPDCR5B-102  | 0.66 | 0.75  | 0.35                | 0.63              | 0.15  | 3.17   | 0.32  | 0.94   | 1.53   |        | 1.04    |       |        |       | 1.07  |
| CPDCR5B-055  | 2.47 | 1.83  | 0.84                | 0.68              | 1.00  |        | 0.80  | 1.17   |        |        | 1.04    |       |        |       | 1.51  |
| B1PD280-040  | 0.40 | 1.32  | 1.58                | 0.41              | 0.59  | 2.32   |       | 2.04   |        |        |         |       |        |       | 1.54  |
| CPDCR1B-052  | 1.82 | 0.69  | 1.44                | 0.94              | 2.48  | 3.71   | 0.38  | 0.70   | 1.13   |        | 3.02    | 0.70  | 0.75   | 1.96  | 1.55  |
| AM206-5      | 1.80 | 0.42  | 0.32                | 0.59              | 1.42  | 0.30   | 0.07  | 0.26   | 4.77   | 0.29   | 5.10    | 0.42  | 1.63   | 5.94  | 1.58  |
| PDCR5B-041   | 1.89 | 2.54  | 0.80                | 0.68              | 1.99  | 3.63   | 1.21  | 0.67   | 2.33   |        |         |       |        |       | 1.78  |
| COL22        | 1.63 | 2.06  | 3.44                | 3.69              | 1.11  | 1.15   | 0.88  | 1.60   | 1.42   | 1.02   | 1.24    | 3.10  | 0.38   | 3.19  | 1.85  |
| CPDCR1B-075  | 0.01 | 2.03  | 0.60                | 1.01              | 0.99  | 3.98   | 0.54  | 0.27   | 4.05   |        |         | 2.38  |        |       | 1.86  |
| CPDCR1B-065  | 0.39 | 0.90  | 1.34                | 1.67              | 4.44  | 3.25   | 1.00  | 0.97   | 1.75   | 1.30   |         | 2.00  | 0.69   | 2.43  | 1.87  |
| CPDCR5B-053  | 0.80 | 2.19  | 0.71                | 0.17              |       |        | 0.36  | 0.40   |        |        |         | 2.87  | 1.72   |       | 1.88  |
| IMC-1        | 0.42 | 0.64  | 3.02                | 4.42              | 1.71  | 4.47   | 0.74  |        | 1.72   | 1.20   | 1.55    | 2.70  | 0.69   | 1.00  | 2.00  |
| CPDCR5B-096  | 1.73 | 1.80  | 0.61                | 0.56              | 2.21  | 3.94   | 0.37  | 2.38   | 3.78   | 1.79   |         | 3.65  | 1.49   | 1.34  | 2.08  |
| 31PD280-008  | 0.37 | 0.70  | 0.44                | 2.71              | 1.82  | 5.80   | 0.67  | 1.24   | 3.61   | 1.74   |         | 2.25  | 0.19   | 2.94  | 2.08  |
| CPDCR1B-046  | 1.14 | 1.94  | 2.56                | 3.78              | 3.60  | 0.88   | 4.50  | 0.57   |        |        |         | 1.24  | 0.69   | 5.12  | 2.36  |
| CPDCR1B-048  | 1.09 | 1.89  | 2.08                | 2.08              | 3.96  | 5.21   | 1.21  | 3.07   | 2.21   |        | 3.38    | 0.51  | 0.67   | 2.82  | 2.39  |
| CPDCR1B-026  | 1.27 | 1.38  | 1.82                | 3.74              | 4.52  | 4.41   | 0.50  | 1.38   | 3.57   |        | 4.66    | 1.79  | 0.23   | 2.79  | 2.60  |
| CPDCR1B-078  | 1.22 | 2.12  | 1.34                | 3.86              | 3.32  | 4.52   | 0.61  | 0.92   |        | 4.62   |         |       |        |       | 2.63  |
| CPDCR1B-064  | 0.51 | 0.45  | 1.73                | 1.64              | 4.97  | 7.61   | 0.67  | 4.00   | 1.56   |        | 4.62    | 1.51  | 0.64   | 2.34  | 2.70  |
| CPDCR5B-016  | 2.64 | 0.71  | 0.77                | 1.21              | 0.36  |        | 2.50  | 5.67   | 3.57   | 8.40   |         | 2.52  | 0.63   | 1.41  | 2.94  |
| CPDCR5B-043  | 1.74 | 1.90  | 1.73                | 0.46              | 5.63  | 0.20   | 0.71  | 3.13   |        | 8.63   |         | 1.41  |        |       | 2.99  |
| CPDCR1B-019  | 1.09 | 2.83  | 2.91                | 2.63              | 3.67  | 3.98   | 1.29  | 2.61   |        |        | 6.23    | 2.21  |        |       | 3.01  |
| CPDCR1B-062  | 1.62 | 2.22  | 1.09                | 3.38              | 5.43  | 3.92   | 1.02  | 5.05   | 3.50   |        | 2.88    | 1.37  | 0.41   | 6.17  | 3.04  |
| CPDCR1B-054  | 1.35 | 1.98  | 3.42                | 2.09              | 5.43  | 6.85   | 0.67  | 2.48   | 3.68   |        | 4.00    | 1.96  | 1.47   | 3.04  | 3.05  |
| CPDCR1B-028  | 0.70 | 1.33  | 1.57                | 1.63              | 4.21  | 6.49   | 0.90  |        | 6.45   |        | 3.51    | 1.78  | 0.36   | 5.45  | 3.10  |
| PDCR5B-109   | 1.71 | 2.02  | 1.30                | 2.71              | 2.46  | 4.35   | 0.70  | 2.47   | 4.71   |        | 9.08    | 1.92  | 1.43   | 3.82  | 3.12  |
| 24           | 4.39 |       | 2.58                | 1.37              | 2.78  | 7.44   | 0.62  | 3.41   |        | 3.56   |         |       | 1.51   | 5.44  | 3.20  |
| CPDCR1B-027  | 1.31 | 1.62  | 0.73                | 1.22              | 5.40  | 3.79   | 0.29  | 1.43   | 7.18   | 8.71   |         | 1.86  | 2.28   | 4.15  | 3.28  |
| PDCR1B-043   | 1.70 | 0.90  | 1.59                | 1.80              | 6.39  | 8.28   | 1.82  | 2.69   |        | 5.23   |         | 3.00  | 1.29   | 3.30  | 3.48  |
| CPDCR1B-034  | 1.85 | 3.62  | 3.50                | 2.51              | 6.65  | 4.32   | 0.64  | 2.08   | 5.45   |        | 7.00    | 1.29  |        |       | 3.51  |
| CPDCR1B-015  | 2.50 | 2.66  | 3.43                | 2.84              | 5.21  | 7.04   | 1.11  | 3.53   | 3.01   | 2.23   |         | 6.37  | 1.51   | 5.32  | 3.59  |
| CM523-7      | 1.84 | 4.82  | 4.17                | 7.39              | 2.86  | 5.34   | 1.34  | 2.23   | 3.52   | 2.06   | 4.68    | 6.36  | 1.35   | 6.58  | 3.75  |
| CPDCR1B-013  | 1.42 | 2.22  | 4.69                | 4.81              |       | 1.64   | 1.62  | 2.77   |        |        | 8.52    | 5.51  | 3.24   | 3.90  | 3.83  |
| CPDCR5B-013  |      |       |                     |                   | 6.36  |        |       |        |        |        |         |       |        |       | 3.84  |
| CPDCR1B-068  | 1.25 | 1.98  | 1.47                | 4.59              | 2.40  | 7.84   | 0.80  | 4.19   | 4.76   | 5.07   |         | 5.99  | 4.44   | 5.40  | 3.91  |
| CPDCR1B-074  | 6.33 | 3.52  | 4.15                | 5.11              | 7.47  | 5.65   | 3.64  | 5.17   | 4.37   |        | 2.45    | 2.86  | 1.09   | 4.00  | 4.17  |
| CPDCR1B-008  | 2.41 | 0.97  | 6.03                | 6.61              | 6.90  | 8.54   | 2.78  | 4.82   | 4.63   | 6.80   |         | 5.95  | 1.88   | 4.46  | 4.98  |
| PDCR1B-076   | 3.13 | 2.72  | 5.95                | 5.37              | 5.86  | 8.03   | 5.53  | 6.68   |        |        | 6.54    | 6.48  | 5.02   | 3 46  | 5.41  |





## PPD Evaluation in Multiple Environments

H<sup>2</sup> is **0.67 14** environments

**7** years

#### Protocol



**Proximal cut** 



#### Pretreatment to accelerate deterioration



Distal cut Wrap with plastic film Tying the p



Tying the plastic film with rubber bands







7 days of storage

# Objective 4: Reduce the duration of the cycle between crossing, trialing, and scaling out to the seed system

**Net house facility** to keep the planting materials pest and disease-free.







## **Objective 3: RTB processing and quality phenotyping**

| SN | Product<br>Pipeline Name                             | Traits for product<br>profiles                                                                                           | Baseline traits                                                                                     | Current Breeding Pipeline                                                                                                | Product samples |
|----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1  | <b>Processed</b><br>Products (Gari and<br>fufu)      | High quantity and<br>quality of processed<br>product (% <b>conversion</b><br><b>rate, colour</b> and<br><b>texture</b> ) | Yield, dry matter, resilience to<br>common biotic and abiotic<br>stresses, flexible time of harvest | West Africa (Nigeria)<br>Central Africa (DRC)                                                                            |                 |
| 2  | Cassava for<br><b>Fresh Markets</b>                  | Root <b>mealiness</b> after<br>boiling,<br>Low cyanogenic<br>potential,<br>Sweet taste                                   | Yield, dry matter, resilience to<br>common biotic and abiotic<br>stresses, flexible time of harvest | East Africa (Uganda and<br>Tanzania)<br>Central Africa (DRC)<br>Southern Africa (Zambia)<br>West Africa (Nigeria, Ghana) |                 |
| 3  | Biofortified<br>cassava for<br>enhanced<br>nutrition | <b>β-carotene</b> , suitability<br>for gari and fufu<br>products                                                         | Yield, dry matter, resilience to<br>common biotic and abiotic<br>stresses, flexible time of harvest | West Africa (Nigeria)<br>Central Africa (DRC)                                                                            |                 |
| 4  | Cassava for<br>Industry                              | <b>High starch</b> and flour<br>content, <b>mechanizable</b><br>plant architecture.                                      | Yield, dry matter, resilience to<br>common biotic and abiotic<br>stresses, flexible time of harvest | West Africa (Nigeria)                                                                                                    |                 |

# Complexity of cassava products, processing steps and current evaluation stages for quality traits





# Cassava garri processing



#### Proposed facility upgrade to streamline root processing









# What we would achieve by facility upgrade



**Customer focus:** 

Deliver smallholders benefits

Deliver varieties that are suitable for the major product value chain



## Operational excellence (root phenotyping):

Implement high-throughput root/tuber phenotyping (intermediate & finished product).

Evaluate more entries at earlier stages of selection

Standardize processing to increase data quality (increase genotype-effect to noise ratio).



#### Organizational leadership:

Occupational health

• Ensure worker operational safety and health

Facility hygiene

• Product quality and safety