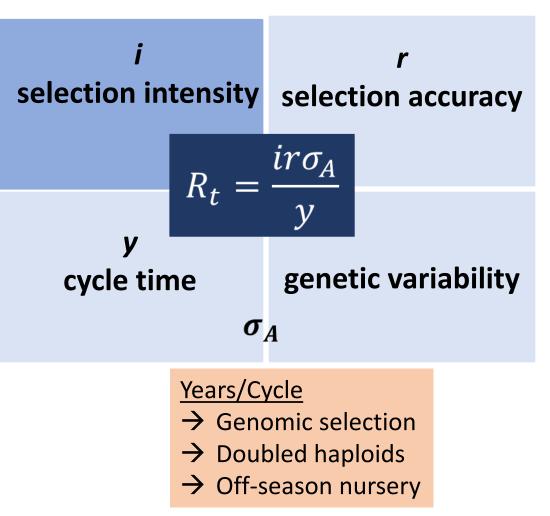


Accelerating Genetic Gains

in Maize and Wheat

Genetic Gains in CIMMYT Maize Breeding Program in Africa

Yoseph Beyene and B.M. Prasanna with CIMMYT-GMP colleagues in Africa


Presentation to AGG-EiB Webinar on Enhancing and Measuring Genetic Gain in Crop Breeding, 19 November 2020

Increasing Genetic Gain in Breeding Programs

Fundamentals

- Experimental designs and control of plot-toplot variability
- Effective population size
- Multi-environment trials
- Phenotyping throughput and accuracy
- Genetic diversity
- Reducing cycle time

AGG-Maize Target: Develop climate-resilient products delivering 1.5 to 2.0% annual genetic gains

CIMMYT Maize Breeding Pipelines Eastern and Southern Africa

Code	Pipeline description	Target Countries	Est. Area (M ha)
EA-PP1	Early/intermediate-maturing, white maize varieties with drought-tolerance, NUE and resistance to GLS, TLB, Ear rots, MSV and MLN, and suitable for food use in Eastern African tropical rainfed dry/wet mid-altitude areas.	Ethiopia, Kenya, Uganda, Tanzania (Northern)	3.17
EA-PP2	Late-maturing, white maize varieties with drought tolerance, NUE, and resistance to GLS, TLB, MSV, common rust, and ear rots, adapted to Eastern African tropical rainfed wet, upper mid-altitude areas, and used mainly for food purposes.	Ethiopia, Kenya, Uganda, Tanzania (Southern)	3.38
EA-PP3	Late-maturing, multiple stress-tolerant white maize varieties for the Eastern African tropical rainfed highlands and used mainly for food purposes.	Ethiopia, Kenya, Uganda, Tanzania (Southern)	1.75
SA-PP1	Intermediate/late maturing, nitrogen-use efficient (NUE), drought- and heat-tolerant white maize varieties for the Southern African tropical rainfed mid-altitude/transition areas and used mainly for food purposes.	Mozambique, Zimbabwe, Malawi, Zambia, Tanzania (Southern); drought-prone smallholder farm areas in South Africa	3.74
SA-PP2	Early-maturing, drought-, heat- and low soil pH stress-tolerant white maize varieties for the Southern African dry/wet lowland and mid-altitude areas and used mainly for food purposes.	Zimbabwe, Malawi, Zambia, Tanzania (Southern), drought- prone smallholder farmers, about 2-3% of total maize area)	2.03

N

CIMMYT Eastern Africa Maize Breeding Pipelines

- An extensive field network to screen for various "must have" and "good-to-have traits" within the Target Population of Environments (TPE).
- The network is managed between CIMMYT, NARS and private sector – in Eastern Africa, NARS accounts for
 ~80% of network, and in Southern Africa 50-65%.

Key Testing Locations

Location	Key Traits
Kiboko (KE)	Yield under drought, low N, Optimal, FAW, stem borers
Kakamega (KE)	Yield, GLS, TLB, common rust, Fusarium ear rot
Elgon downs (KE)	Yield, GLS, TLB, common rust, Fusarium ear rot
Bako (ET)	Yield under optimal and low N, GLS, TLB
Karatu (TZ)	Yield, common rust
Uyole (TZ)	Yield, GLS, TLB
Bulindi (UG)	Yield, TLB
Bulegeni (UG)	Yield, GLS
Embu (KE)	Yield under optimal, low N
Alupe, Kibos (KE) Naivasha (KE)	Striga (artificial infestation) MLN (artificial inoculation)

CIMMYT Southern Africa Maize Breeding Pipelines

High grain yield

White

Lodging

tolerance;

Husk cover

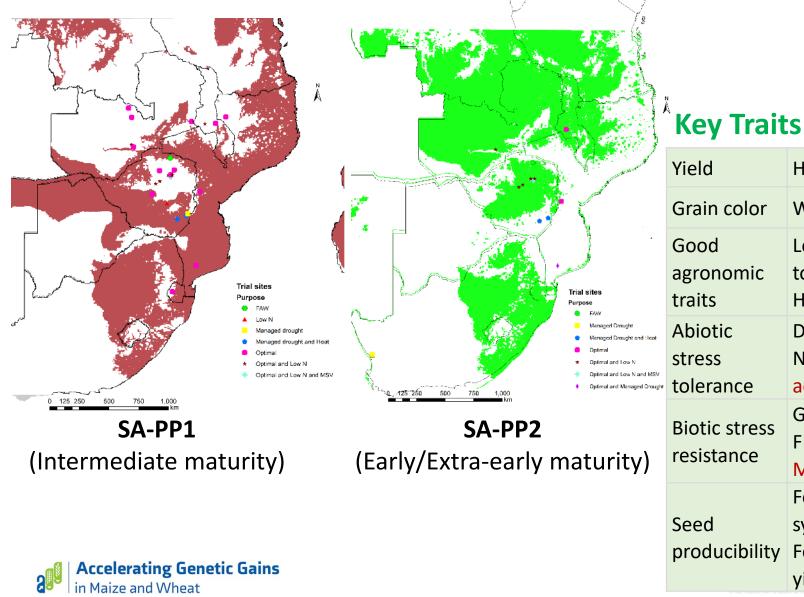
NUE, Soil

acidity

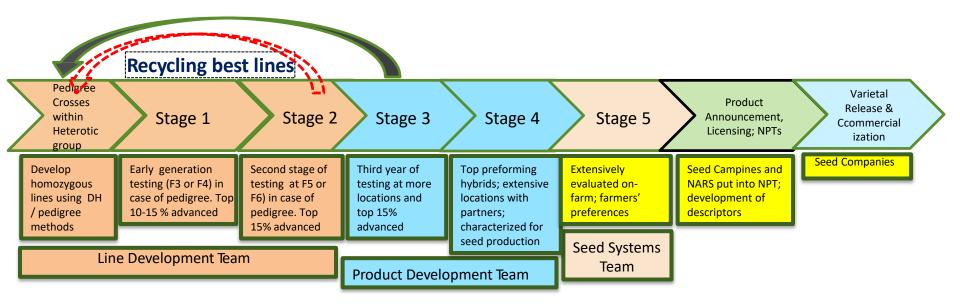
MLN

yield

Drought, Heat,


GLS, TLB, Rust,

FER, MSV, FAW,


Female-male

Female parent

synchrony;

CIMMYT Maize Breeding: Stage-Gate Process

- Stage 1 First testcross evaluation; one tester; 2 reps, 3-5 sites
- Stage 2 Selected lines (10-15% S.I.) from Stage 1 trials; 3 testers; 2 reps, 8-10 sites
- Stage 3 Selected lines from Stage 2 trials (15% S.I.); Cross with 5 testers; 2 reps, 10-15 locations
- Stage 4 (Regional On-station Trials) Best products from Stage 3; 2 rows, 3 reps, 45-60 entries
- Stage 5 (Regional On-Farm Trials) 30-50 on-farm trials per Product Profile; Farmers' preferences
- Final Product Advancement Meeting to identify products/pre-commercial hybrids to be announced to the partners through CIMMYT Website

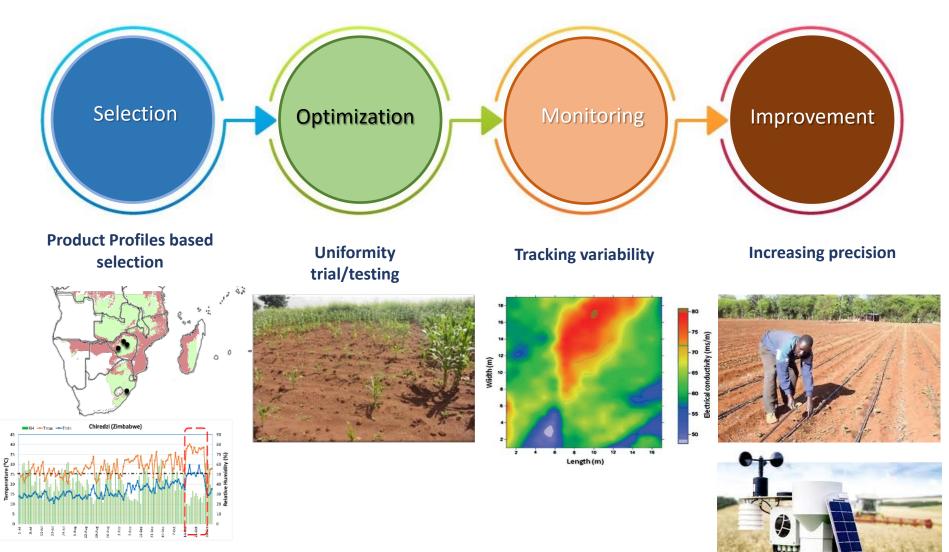
Process & Criteria for Stage-Gate Advancement

Stage 1 to Stage 2 [Line Development Team]

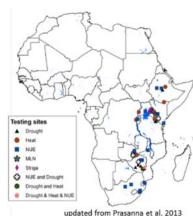
- Line entering Stage 1 TC are pre-selected for disease resistance (e.g., MSV, MLN) using markers.
- GEBV of the line estimated
- Hybrid performance (yield under optimal, and abiotic stresses, diseases)
- Selection intensity of 10-15% applied
- Use of weights as appropriate using inhouse Fieldbook software
- Number of lines used in Stage 1 varies: 1000-1500.

Stage 2 to Stage 3 [Line Development Team]

- GCA of the line with three testers
- Hybrid performance at more locations relative to Stage 1 (5 optimal; 1 drought; 1 low N; 1 MLN; 1 Striga; 1 for foliar diseases)
- Sites with low heritability (<0.10) discarded
- Selection intensity of 10-15% applied.


Stage 3 to Stage 4 [Product Development Team; Advancement Committee]

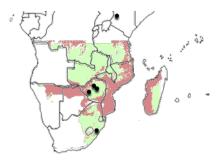
- Hybrid performance at more locations (10-15) relative to Stage 2 (7 optimal; 1 drought; 2 low N; 1 MLN; 2 Striga; 2 for foliar diseases)
- Sites with low heritability (<0.10) discarded
- Selection intensity of 15% applied
- Breeding Team decision on lines to be recycled


Testing Site Selection and Optimization

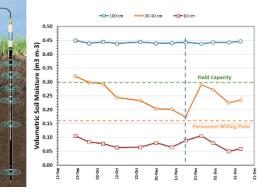
Improving Phenotyping Accuracy and Selection Efficiency

Protocols

Data Collection methods



Digitization and sensorbased phenotyping


International Maize and Wheat Improvement Center

Product Profiles based testing network

Harmonized Protocols (Revised/Updated as required)

Phenotyping for "Must-have" and "Value-added" Traits

Integrating DH in Maize Breeding in ESA

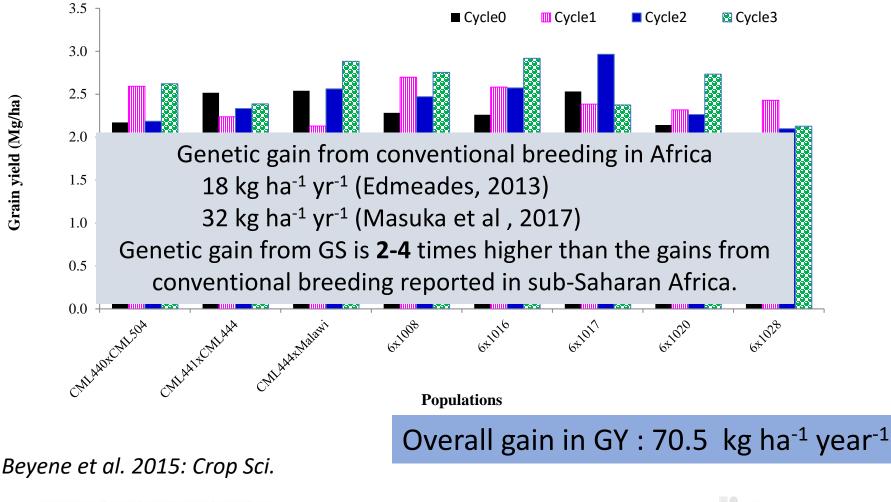
- DH lines developed from 2124 populations with an average of 160 DH lines per population.
- These DH lines were evaluated for per se performance, including responses to major leaf diseases in Africa.
- Testcrosses developed and evaluated in Stages 1, 2 & 3 and Regional Trials across locations in different countries
- DH-based hybrids released in Kenya, Uganda, Tanzania, South Africa and nominated in Mozambique

Over **350,000 maize DH lines** generated and tested by CIMMYT in the last 7 years

Forward Breeding: Using Msv1 haplotype for selection of MSV resistance at early stage of testcross formation

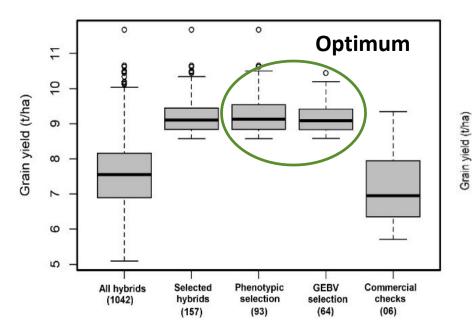
SNP	Trait	Chr	SNP	RR	SS
PZE0186065237	MSV	1	C/T	C:C	T:T
PZE0186365075	MSV	1	C/A	C:C	A:A
PZE-10109395	MSV	1	A/G	A:A	G:G

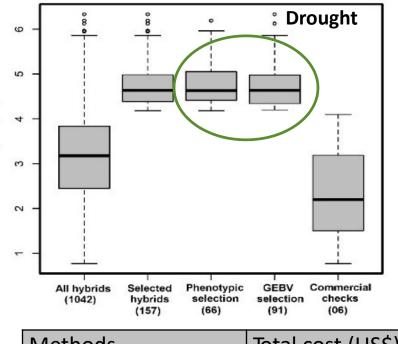
Sampling leaf tissue in the DH nursery



Population	PZE-	PZE01860	PZE01863	Comment on msv1 data	Decision
	101093951	65237	65075		
CML312/INTA-F2-192-2-1-1-1-B*7-2-B-10-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/INTA-F2-192-2-1-1-1-B*7-2-B-10-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject

Gain in grain yield using genomic selection under drought environments in ESA




Genomic selection shows clear benefits over PS alone

Category	# lines	# testers	# of hybrids
All stage II hybrids	348	3	1042
Hybrids advance through phenotype	176	3	526
Hybrids advance through GEBV	172	3	516

Stage1 TC: 50% Phenotyping + 50% genotyping

Beyene et al (2019). *Front. Plant Sci.* 10:1502. doi: 10.3389/fpls.2019.01502

Methods	Total cost (US\$)
Total cost of GS	91,870
Total cost of PS	134,280
GS:PS cost ratio	0.68

nternational Maize and Wheat Improvement Center

RESEARCH

Genetic Gains in Grain Yield Through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress

Yoseph Beyene,* Kassa Semagn, Stephen Mugo, Amsal Tarekegne, Raman Babu, Barbara Meisel, Pierre Schabiague, Dan Makumbi, Cosmos Magorokosho, Sylvester Oikeh, John Gakunga, Mateo Vargas, Michael Olsen, Boddupalli M. Prasanna, Marianne Banziger, and Jose Crossa

OPEN ACCESS

Edited by: Thomas Medaner, University of Hohenheim, Germany Reviewed by: Denir, Akdemir, Cornell University, United States Yusheng Zhao, Leibnir-Institut für Pflerurengeneik und

Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations

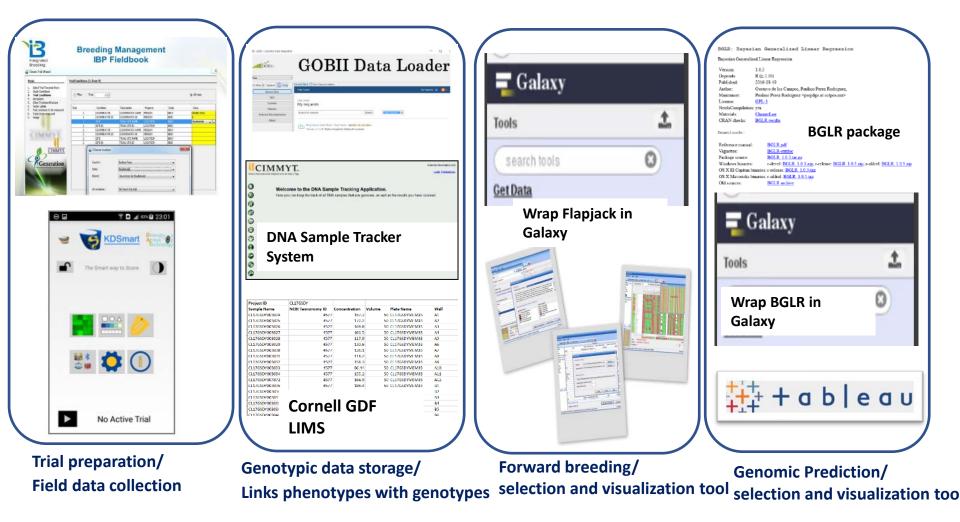
Ao Zhang ^{1,24}, Hongwu Wang^{2,34}, Yoseph Beyene ⁴, Kassa Semagn⁴⁴, Yubo Liu^{1,2}, Shiliang Cao⁶, Zhenhai Cui¹, Yanye Ruan ¹, Juan Burgueño², Felix San Vicente², Michael Olsen ⁴, Boddupalli M. Prasanna⁴, José Crossa², Haiqiu Yu^{1*} and Xuecai Zhang^{2*}

Euphytica (2016) 208:285–297 DOI 10.1007/s10681-015-1590-1

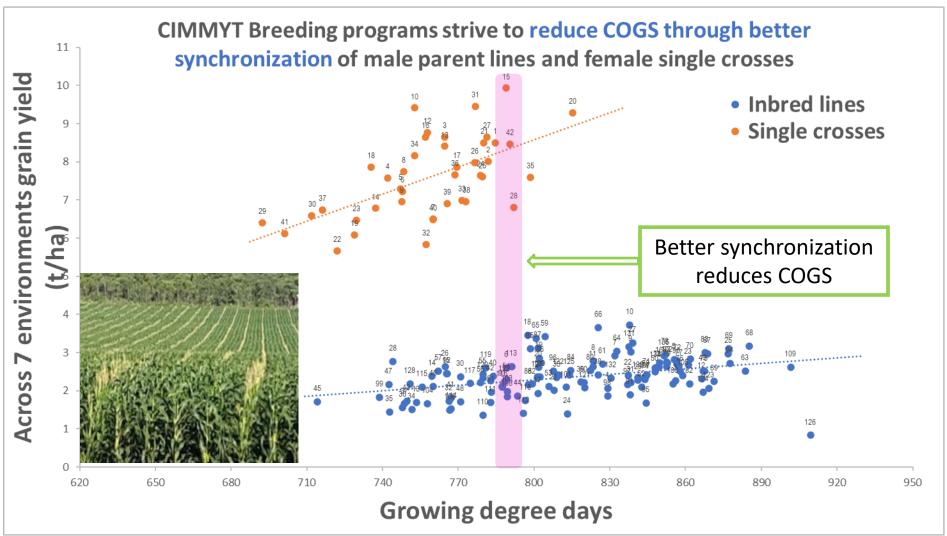
RESEARCH

Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures

Yoseph Beyene · Kassa Semagn · Stephen Mugo · Boddupalli M. Prasanna · Amsal Tarekegne · John Gakunga · Pierre Schabiague · Barbara Meisel · Sylvester O. Oikeh · Michael Olsen · Jose Crossa


Improving Maize Grain Yield under Drought Stress and Non-stress Environments in Sub-Saharan Africa using Marker-Assisted Recurrent Selection

Yoseph Beyene,★ Kassa Semagn, Jose Crossa, Stephen Mugo, Gary N. Atlin, Amsal Tarekegne, Barbara Meisel, Pierre Sehabiague, Bindiganavile S. Vivek, Sylvester Oikeh, Gregorio Alvarado, Lewis Machida, Michael Olsen, Boddupalli M. Prasanna, and Marianne Bänziger

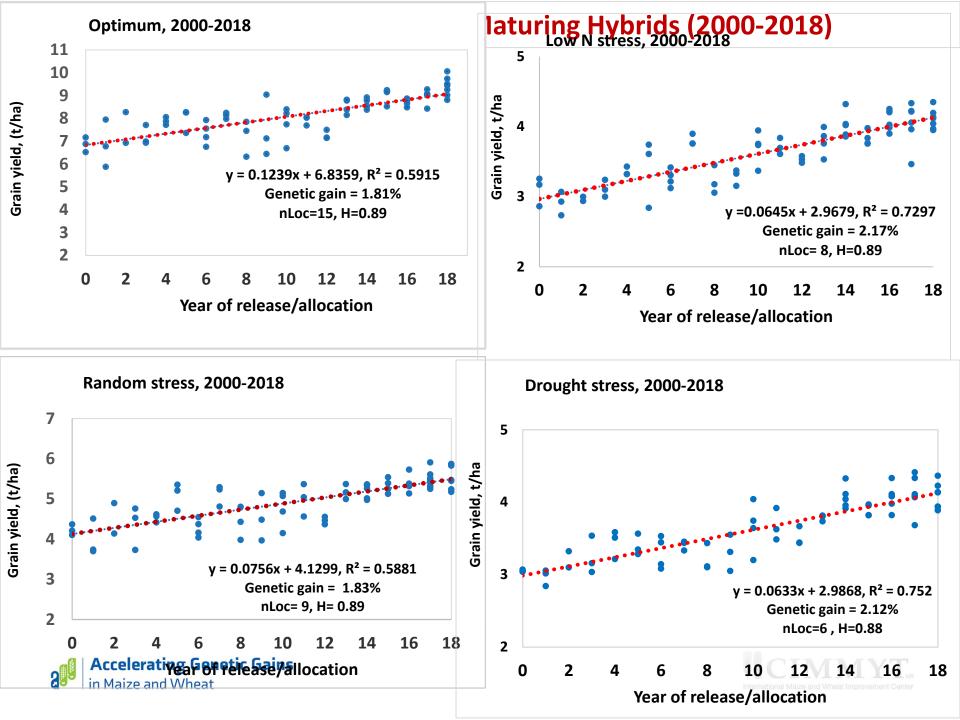

Integrating Phenotypic and Genotypic Data to Implement Forward Breeding and GS

Seed Systems as an integral part of Maize Breeding

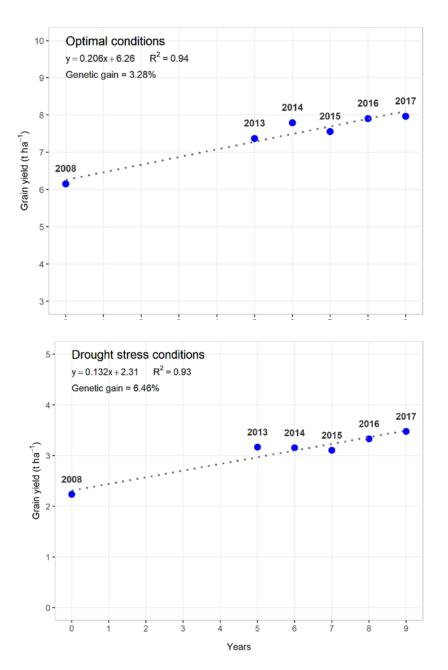
Parents of Stage 4 Hybrids, CIMMYT-Kenya, 2019

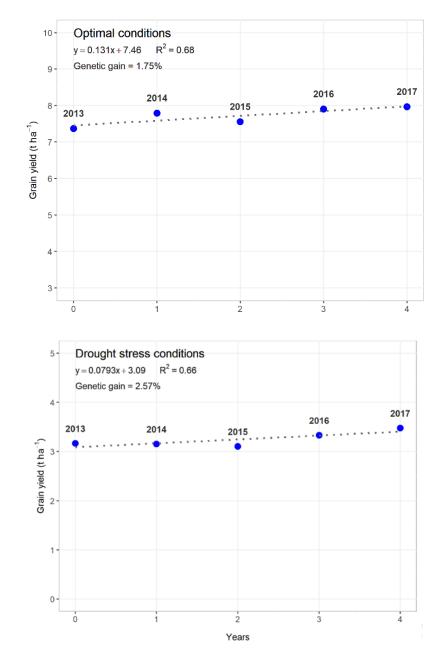
Genetic Gains Assessment by CIMMYT Maize Program

- "Era study" evaluates hybrids released/developed in different years together in common field trials (useful as a baseline, but expensive to implement)
- Genetic gain estimate using historical/long-term yield trials (useful, especially for breeding programs with long-term history)
- Annually comparing newer hybrids with baseline commercial hybrids and internal genetic gain checks (must-do in breeding programs)

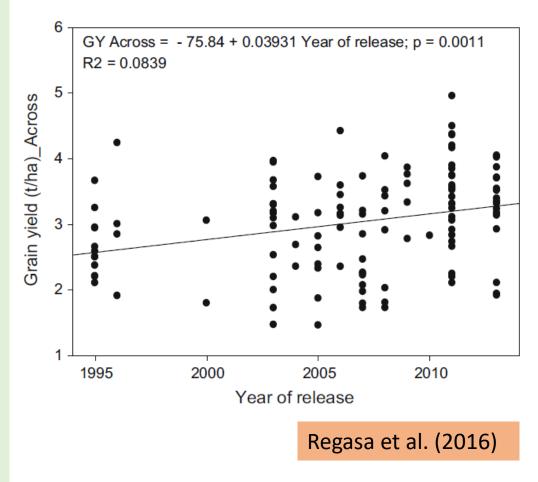

CIMMYT-ESA: Era Study

Trial Information Summery


	SA	EA	
Germplasm class	Early/e-early maturity	Medium maturity	
Era	18-yr (2000-2018)	9-yr (2008-2016)	
Comm. Checks	3 (pre-2000)	6 (pre-2008)	
Entries	72	16	
Sites	46	27	
Year conducted	2 years (2017 , 2018)	2 years (2017, 2018)	
Management group	4	2	
Opt	15	20	
RS	9		
Dt	10	7	
LN	12		
Partner participation	Yes (private and NARS)	Yes (private and NARS)	
Participating countries	7	3	



Genetic Gain in Intermediate Maturity Hybrids (2008-2017)



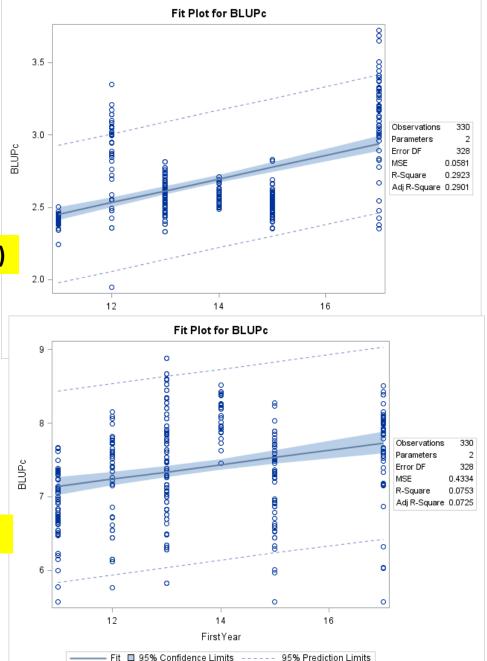
Genetic Gain in GY of Maize Inbred Lines

- # inbred lines = 124 (34 CMLs; 90 coded lines)
- Developed during 1996 to 2013 through pedigree and DH
 - Pre-1996 = 12 lines
 - 1996-2000 = 6 lines
 - 2001-2005 = 27 lines
 - 2006-2010 = 34 line
 - 2011-2013 = 45 lines
- Evaluated at 6 sites in Kenya and Uganda

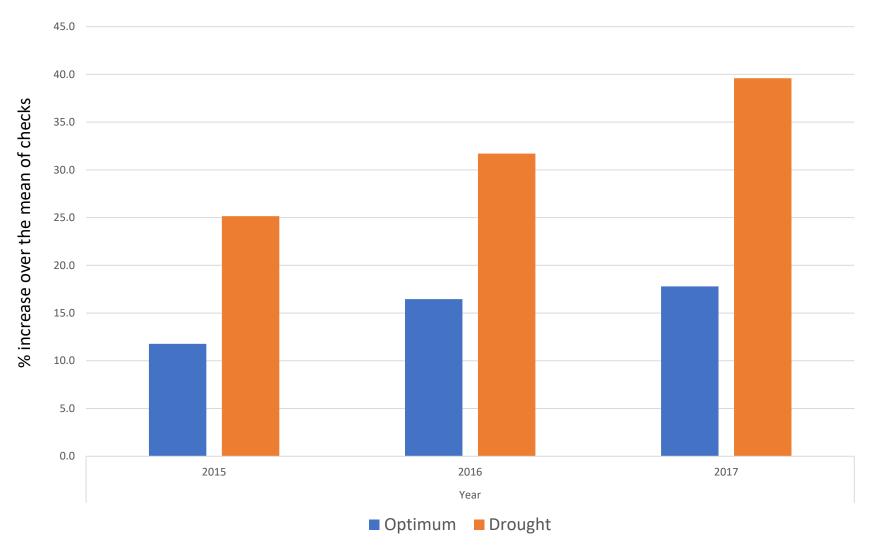
Estimating Genetic Gain using Historical Regional Trials Data Eastern Africa - Early maturity

Summary of the drought trials

Management	Maturity	Year	Number of Trial	Number of rep	H2
Drought	Early	11	5	3	0.07
Drought	Early	12	7	2	0.67
Drought	Early	13	6	2	0.29
Drought	Early	14	4	2	0.21
Drought	Early	15	6	2	0.35
Drought	Early	16	6	2	0.29
Drought	Early	17	7	2	0.66

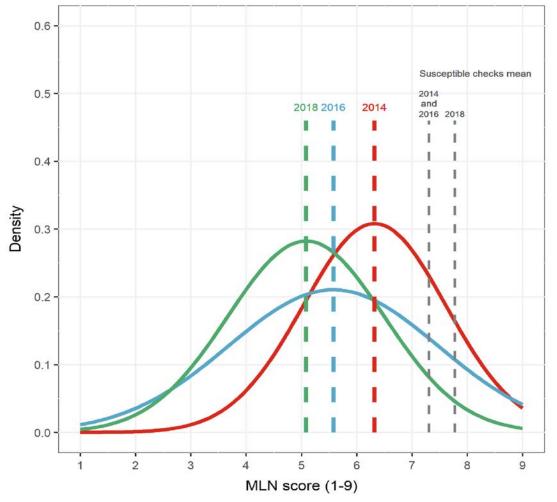

Estimated genetic gain= 2.6% (68 kg/ha/year)

Number of Number Management H2 Maturity Year Trials of rep 0.70 Optimum Early 11 9 3 Optimum 12 11 2 0.81 Early 0.95 Optimum 13 31 2 Early 22 0.91 Optimum 14 2 Early 15 29 2 0.89 Optimum Early 0.95 Optimum Early 16 31 2 Optimum 17 23 2 0.91 Early


Estimated genetic gain= 1.4% (98 Kg/ha/year)

Summary of the optimum trials

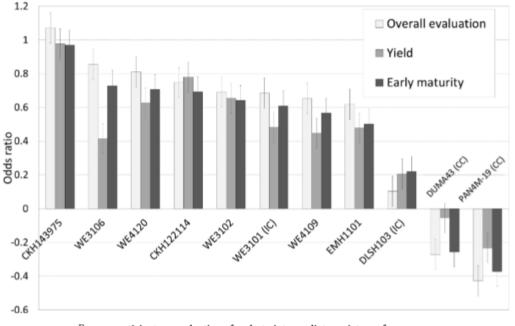
Comparing newer hybrids with baseline commercial checks


Breeding Progress for MLN tolerance 2012-2018

Recycling the best MLN tolerant/resistant parents, we could significantly increase MLN resistance among the populations from year to year.

	# lines	
Year	evaluated	
2014	2876	
2016	1522	
2018	909	
Total	5307	

Measuring Genetic Gain On-farm


Contents lists available at ScienceDirect

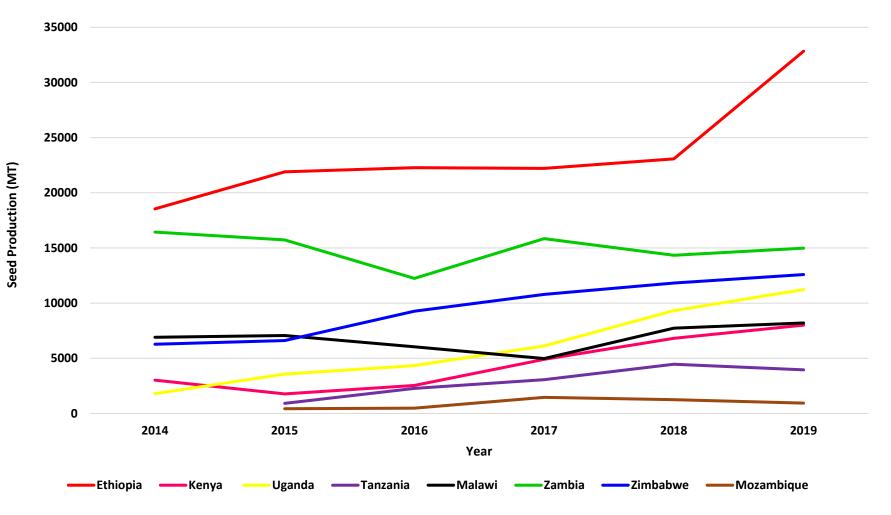
Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

On-farm performance and farmers' participatory assessment of new stresstolerant maize hybrids in Eastern Africa

Mosisa Worku^a, Hugo De Groote^{a,*}, Bernard Munyua^a, Dan Makumbi^a, Fidelis Owino^a, Jose Crossa^b, Yoseph Beyene^a, Stephen Mugo^a, McDonald Jumbo^a, Godfrey Asea^c, Charles Mutinda^d, Daniel Bomet Kwemoi^c, Vincent Woyengo^e, Michael Olsen^a, Boddupalli M. Prasanna^a

Farmer participatory evaluation of early-to-intermediate variety performance



Check for

Certified Seed Production (MT) of CIMMYT-Derived Varieties (2014-2019) in ESA

Acceleration Genetic contes An Vaize and how Den Dong