





Harnessing the potential of highly informative KASP and middle density SNP markers panel for yam breeding

Crops to End Hunger webinar August, 2023





#### **Outlines**

#### Introduction

#### Low density SNP markers

- QC/QA marker development, validation and application
- Trait marker validation

#### Middle density SNP markers

 Panel SNP markers: Middle density of 3092 SNP for GS/GPCP

#### **Development of reference genome**

Ongoing molecular activities

Take home message



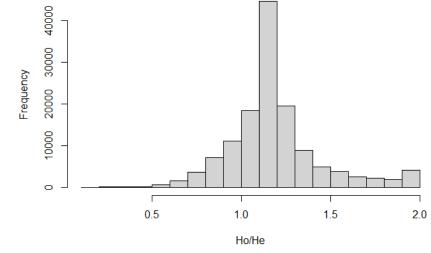


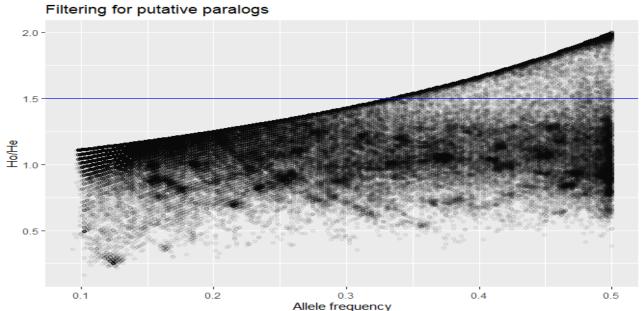




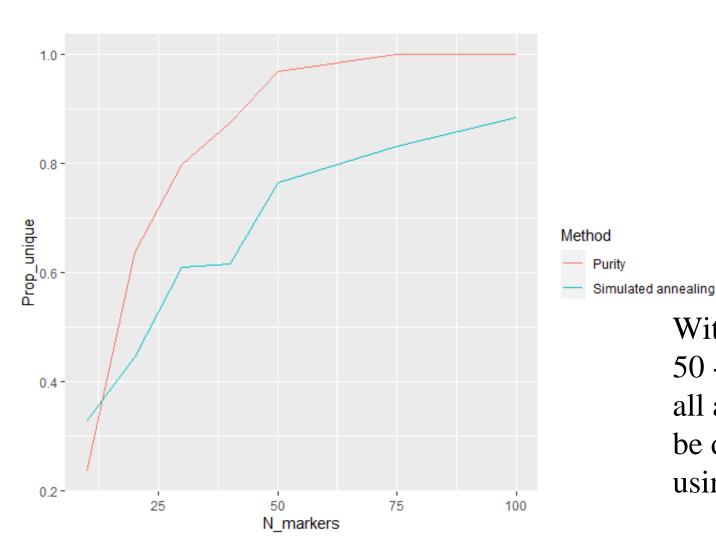
#### Introduction

- Mis-labelling error frequently occurred in germplasm management
- Genetic purity and variety tracking
- Pedigree verification (intra and inter specific)
- Trait performance prediction at early generation through MAS
- Optimizing the breeding program
- Parental selection & heterotic group
- Implementation of genomic
  prediction and cross performance




#### QC/QA Marker: Selection procedure

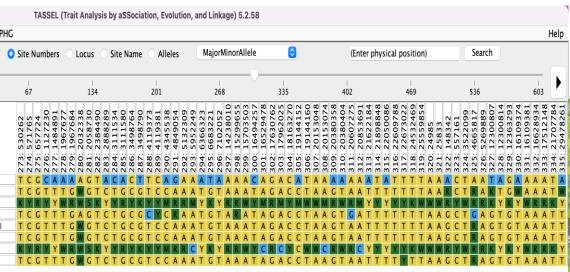

Histogram of Ho/He

- o PIC
- Ho/He
- MAF
- **Putative Paralogs**
- GC content
- Duplicate
- Missing %
- **INDELS**





#### QC/QA Marker: Selection procedure

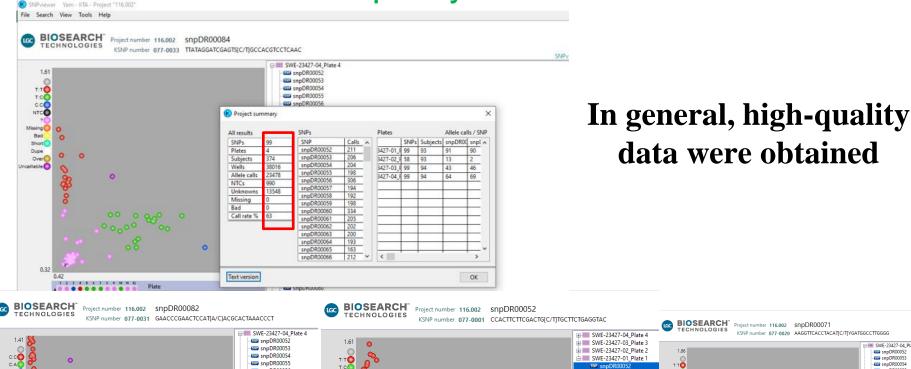


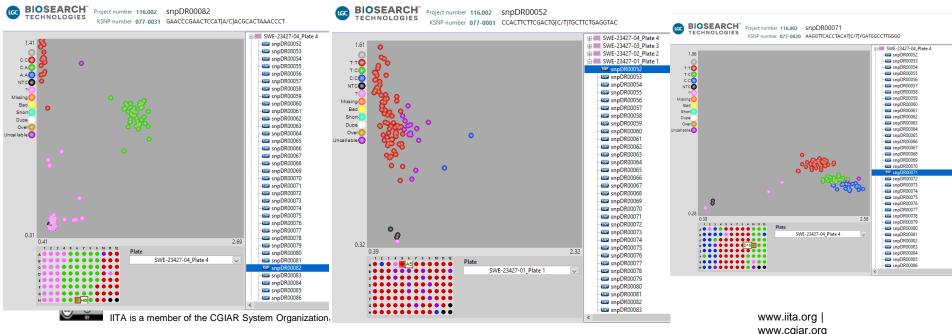

With a range from 50 - 100 markers, all accessions could be distinguished using Purity method

https://github.com/HPCBio/eib-marker-design/blob/main/Pedigree\_verification.md

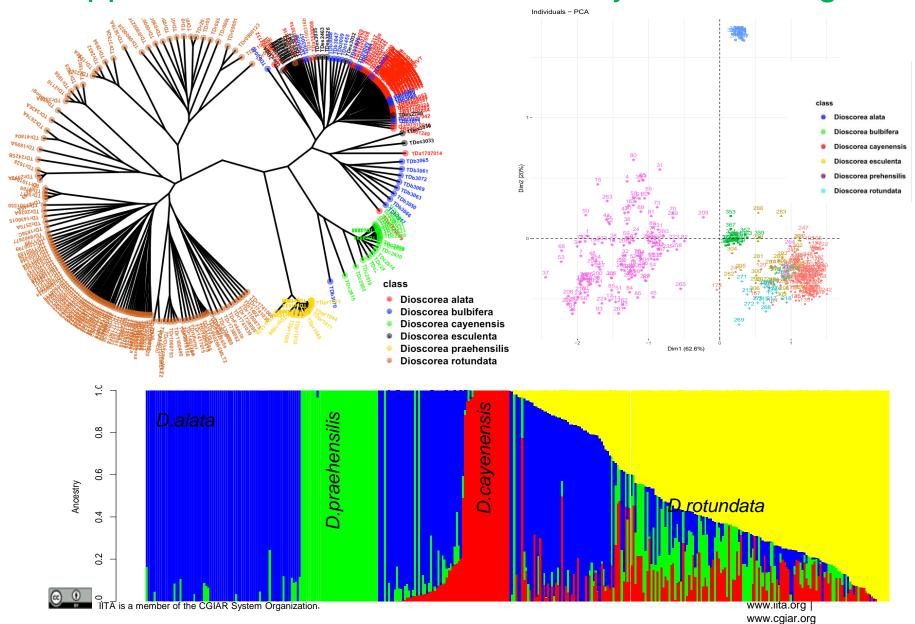


## Low density SNP markers: QC/QA QC/QA Marker: selection procedure

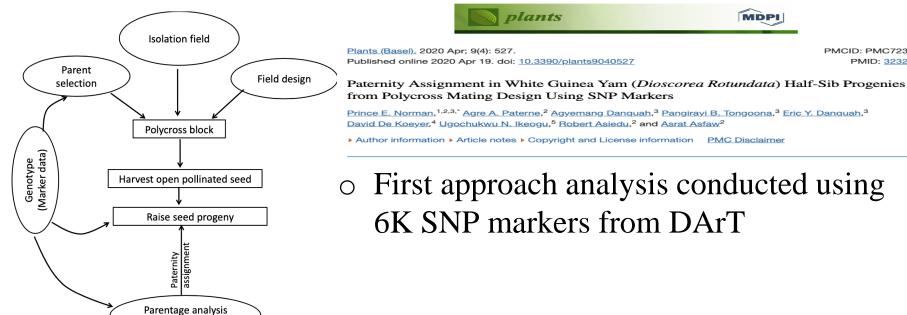



- 99 SNP markers well distributed across the genome were selected and successfully converted to KASP
- 374 diverse clones representing D. alata, D. rotundata, D. praehensilis, D. esculenta D. cayenensis sent to INTERTEK for validation

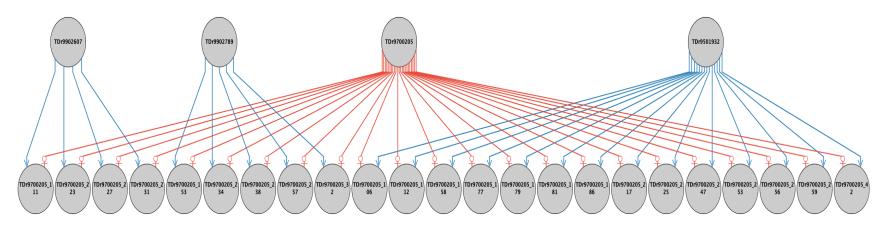



SNP markers quality view






## Application of QC/QA markers in yam breeding



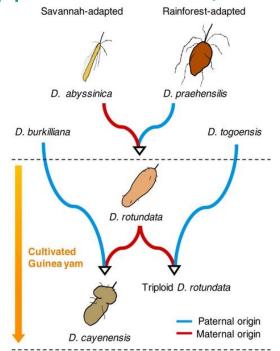

#### Application of QC/QA markers: Pedigree reconstruction



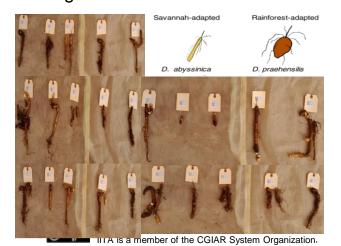
First approach analysis conducted using

Replicated work using only 50 QC markers




PMCID: PMC7238154

PMID: 32325826


(Molecular data+model)



#### Application of QC/QA markers: Fidelity of crosses/hybridity test



Sugihara et al. 2020



GG (100%G) TT (100%T) TT (100%T) TT (100%T) TC(505T & 50%C) TC(505T & 50%C) Hybrid INTERSPCE-D09 INTERSPCE-G09 INTERSPCE-C10 INTERSPCE-A12 INTERSPCE-B12 INTERSPCE-C02 INTERSPCE-D02 INTERSPCE-F02 INTERSPCE-G02 INTERSPCE-H02 INTERSPCE-BO3 INTERSPCE-CO3 INTERSPCE-D03 INTERSPCE-E03 INTERSPCE-E03 INTERSPCE-G03 INTERSPCE-H03 INTERSPCE-A04 Hybrid

Marker segregation among the inter-specific progenies

#### Genetic purity

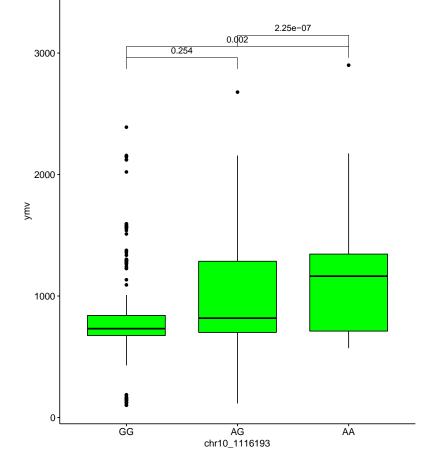
- Fourteen SNP selected for varietal tracking, verification
- Genotypes were selected from trials: APT, NPT, RVT & VVT
- Six plants selected per plot and rep across various locations

| TDrRVT2022IBN_106     | Oju-iyawo  | TC | TA | GG | TC | GA | TC | GC | TC | TC | GA | TC | TC       | TC |
|-----------------------|------------|----|----|----|----|----|----|----|----|----|----|----|----------|----|
| TDrRVT2022IBN_127     | Oju-iyawo  | TC | TA | GG | TC | GA | TC | GC | TC | TC | GA | TC | TC       | TC |
| TDrNPT1 2022IBN 11    | Ojuiyawo   | TC | TT | GG | TC | GA | TC | GG | TC | TC | GA | TC | TC       | TC |
| TDrNPT1 2022IBN 21    | Ojuiyawo   | TC | TT | GG | TC | GA | TC | GG | TC | TC | GA | TC | TC       | TC |
| TDrNPT1 2022IGO 11    | • •        | TC | TT | GG | TC | GA | TC | GG | TC | TC | GA | TC | TC       | TC |
|                       | Ojuiyawo   |    |    |    |    |    |    |    |    |    |    |    |          |    |
| TDrNPT1_2022IGO_21    | Ojuiyawo   | TC | TT | GG | TC | GA | TC | NN | TC | NN | GA | TC | TC       | TC |
| TDrNPT1_UB111         | Ojuiyawo   | CC | NN | NN | CC | NN | NN | NN | CC | TT | NN | NN | NN       | CC |
| TDrNPT1_UB121         | Ojuiyawo   | CC | NN | GG | NN | NN | NN | GG | TC | NN | NN | CC | CC       | CC |
| TDrRVT2022Ubiaja_103  | Ojuiyawo   | TC | TT | GG | TC | GA | TC | GG | TC | TC | GA | TC | TC       | TC |
| TDrAPT_2022IBN3       | TDr1000048 | TC | TT | GG | TC | GA | TC | GC | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN12      | TDr1000048 | TC | TT | GG | TC | GA | TC | GC | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN23      | TDr1000048 | TC | TT | GG | TC | GA | CC | GC | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN25      | TDr1000048 | TC | TT | GG | TC | GA | CC | GC | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN37      | TDr1000048 | TC | TT | GG | TC | GA | TC | GC | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022IBN_2     | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022IBN_27    | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022_IGO_6    | TDr8902665 | TC | TT | GC | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022_IGO_28   | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrRVT2022IBN_112     | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrRVT2022IBN_132     | TDr8902665 | TC | TA | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN6       | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN13      | TDr8902665 | TC | TT | GG | TC | GA | TC | GC | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN24      | TDr8902665 | TC | TT | GG | TC | GA | TC | GC | TC | TT | AA | TC | TC       | TC |
| TDrAPT_2022IBN26      | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrAPT_2022IBN38      | TDr8902665 | TC | TT | GG | TC | GA | TC | GC | TC | TT | GA | TC | TC       | TC |
| 2022VVT_IWO_104       | TDr8902665 | TC | TT | GC | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| 2022VVT_EDE_4         | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022Ubiaja_6  | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC       | TC |
| TDrNPT2_2022Ubiaja_28 | TDr8902665 | TC | TT | GG | TC | GA | TC | GG | TC | TT | GA | TC | TC<br>CC | TC |
| TDrRVT2022Ubiaja 116  | TDr8902665 | TC | TT | GG | TC | GG | TC | GG | TC | TT | AA | TC | CC       | CC |

www.cgiar.org

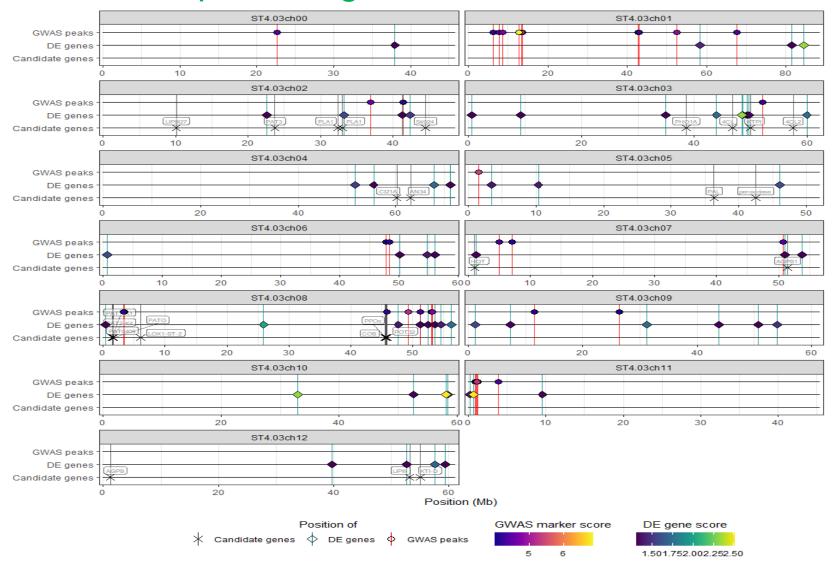


## Selection of promising markers


#### SNP markers already identified using GWAS and QTL mapping

| Traits                 | Species     | Sources             | Number of QTL | Promising QTL | Validated QTL |  |  |
|------------------------|-------------|---------------------|---------------|---------------|---------------|--|--|
| YMV                    | D.rotundata | Association mapping | 15            | 4             | 2             |  |  |
| Yield per plant        | D.rotundata | Association mapping | 18            | 3             | 2             |  |  |
| Plant sex              | D.rotundata | Association mapping | 14            | 2             | 2             |  |  |
| Flowering<br>Intensity | D.rotundata | Association mapping | 7             | 4             | 2             |  |  |
| Plant vigor            | D.rotundata | Association mapping | 3             | 1             | 1             |  |  |
| Tuber appearance       | D.rotundata | Association mapping | 4             | 2             | 1             |  |  |
| YAD                    | D.alata     | Linkage mapping     | 5             | 2             | NA            |  |  |
| Dry matter             | D.alata     | Association mapping | 2             | 2             | NA            |  |  |
| Oxidation              | D.alata     | Association mapping | 4             | 2             | NA            |  |  |
| Plant sex              | D.alata     | Association mapping | 57            | -             | -             |  |  |
| ACR                    | D.alata     | Association mapping | 12            | -             | -             |  |  |
| PHC                    | D.alata     | Association mapping | 6             | -             | -             |  |  |
| PHC                    | D.rotundata | Association mapping | 2             | -             |               |  |  |
| ACR                    | D.rotundata | Association mapping | 2             | -             |               |  |  |




Selection of promising markers

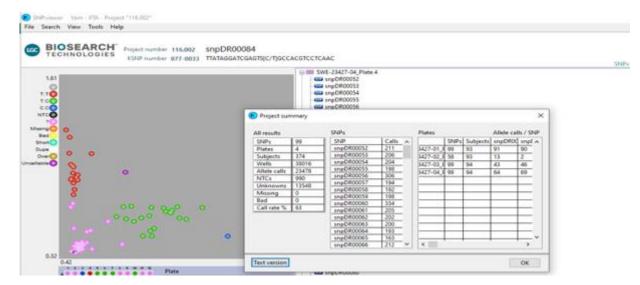
|     | _              |      |      |       |                       |     |
|-----|----------------|------|------|-------|-----------------------|-----|
| YMV | chr03_6338751  | Нар1 | GGGT | 0.427 | 1.000                 | ns  |
|     |                | Нар2 | GGTT | 0.320 | 1.000                 | ns  |
|     |                | Нар3 | GTTT | 0.466 | 1.000                 | ns  |
|     | chr10_1116193  | Нар1 | AAAG | 0.226 | 0.254                 | ns  |
|     |                | Hap2 | AAGG | 0.309 | 0.003                 | **  |
|     |                | Нар3 | AGGG | 0.465 | 6.75 e <sup>-07</sup> | *** |
|     | chr15_3906069  | Hap1 | AAAC | 0.214 | 0.882                 | ns  |
|     |                | Hap2 | AACC | 0.281 | 0.882                 | ns  |
|     |                | Нар3 | ACCC | 0.412 | 0.882                 | ns  |
|     | chr16_1482029  | Нар1 | AAAT | 0.307 | 0.096                 | ns  |
|     |                | Hap2 | AATT | 0.424 | 2.01 e <sup>-04</sup> | *** |
|     |                | Hap3 | ATTT | 0.576 | 0.006                 | **  |
|     | chr05_30671001 | Нар1 | AAAG | 0.365 | 1.000                 | ns  |
|     |                | Нар2 | AAGG | 0.265 | 1.000                 | ns  |
|     |                | Нар3 | AGGG | 0.369 | 1.000                 | ns  |





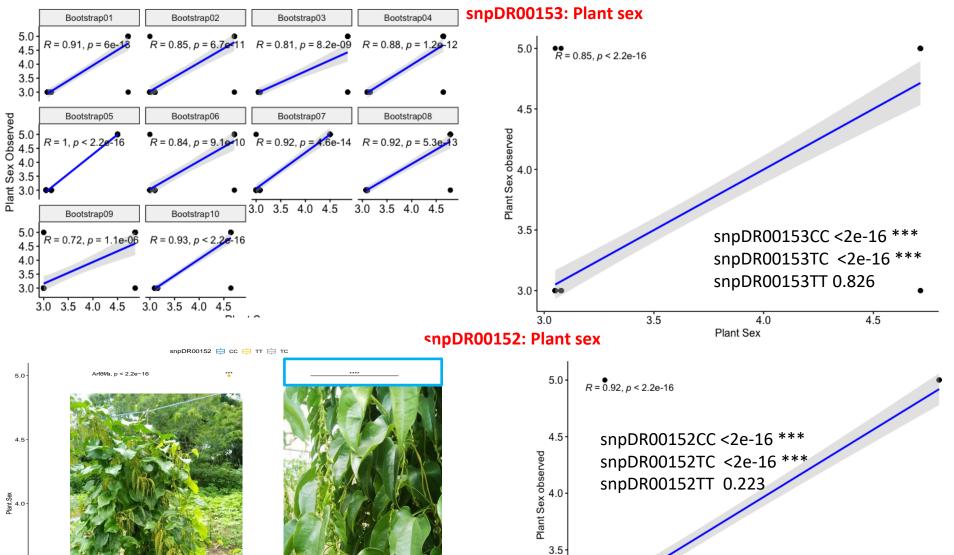
#### Selection of promising markers






# Seven traits were considered for the marker validation in *D. rotundata*

- Tuber yield per plant
- Yam mosaic virus
- Plant sex,
- Flowering intensity
- Plant vigor
- Tuber appearance
- Tuber shape


Flanking sequencing around the target region associated with each trait was developed and sent to INTERTEK for conversion into KASP-PCR

- For traits like sex, clones with well known sex information and those with unknow sex status were selected for the validation
- For disease, clones susceptible or tolerant to disease were used for the validation
- We then developed haplotype variant to estimate the marker prediction accuracy of each marker and for each trait



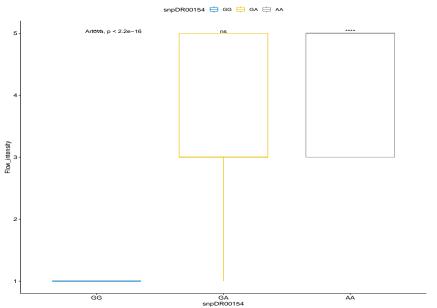
snpDR00152 IIIA IS A IIIEIIDEI OI LIE OOMAN SYSTEIII OIYAIIZALIOII-

# Low density SNP markers: Trait markers

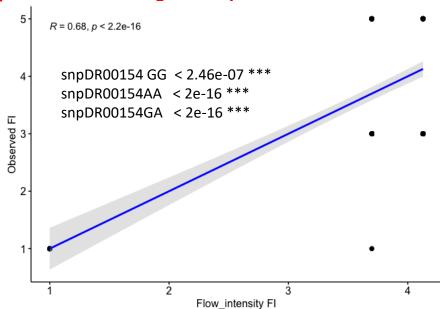


3.0

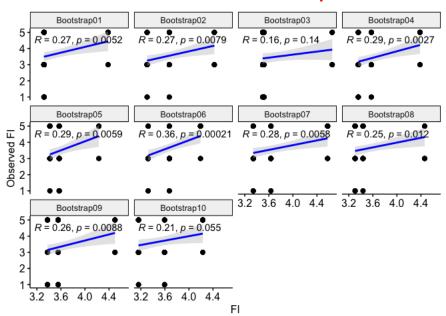
3.0

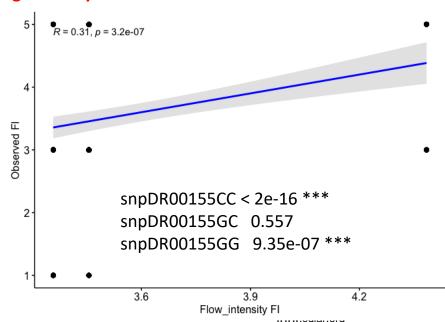

3.5

4.0

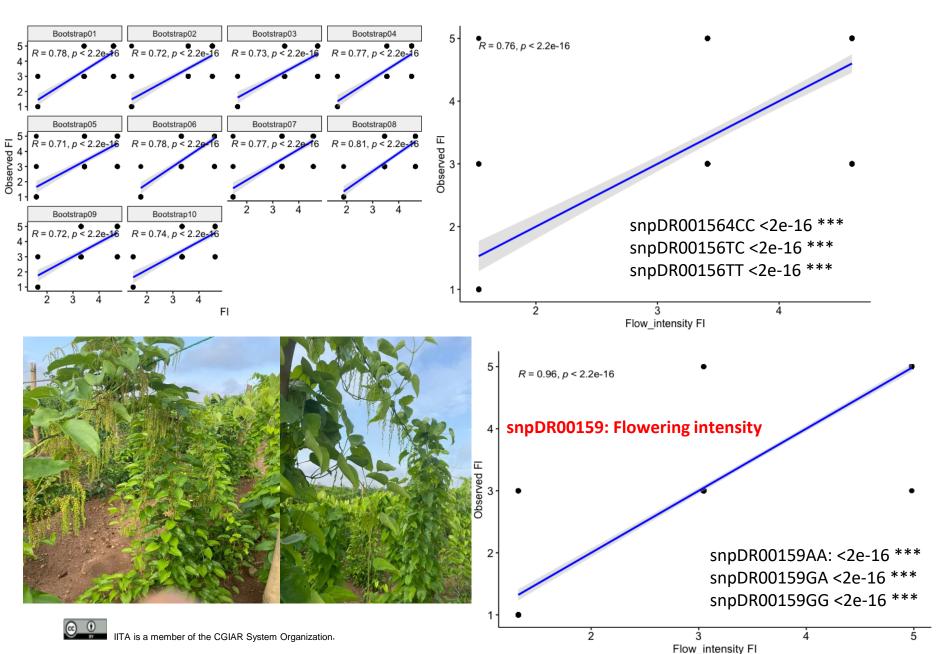

www.ma.org www.cgiar.org

Plant Sex

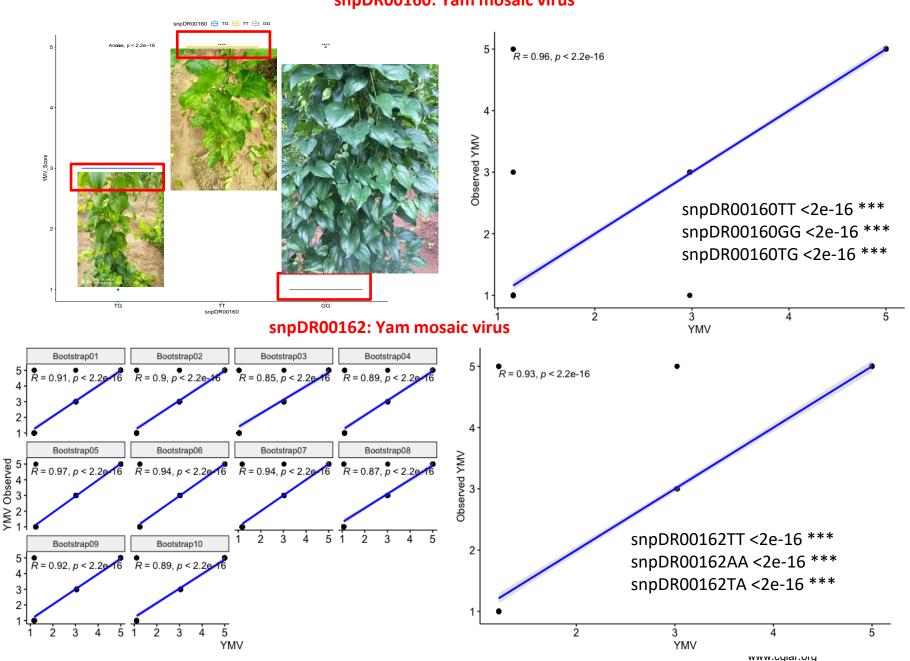

4.5

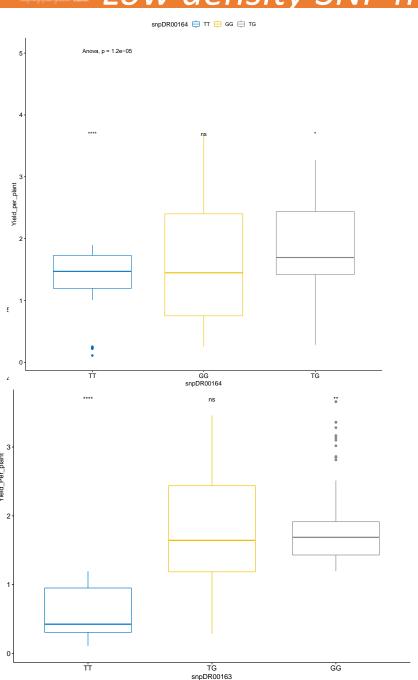


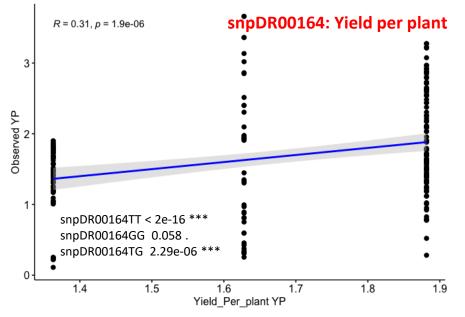

#### snpDR00154: Flowering intensity



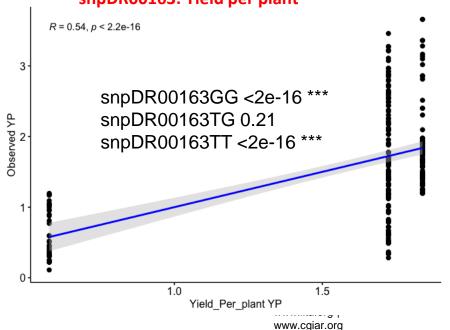

#### snpDR00155: Flowering intensity





#### snpDR00156: Flowering intensity

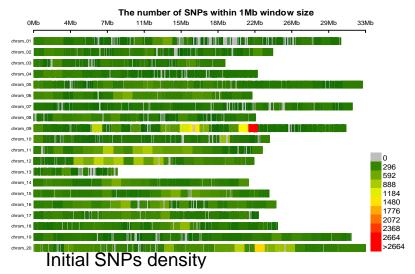


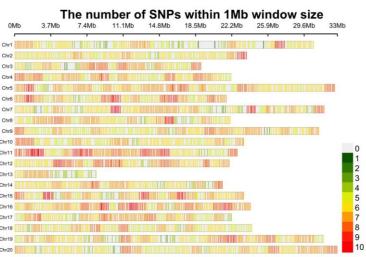


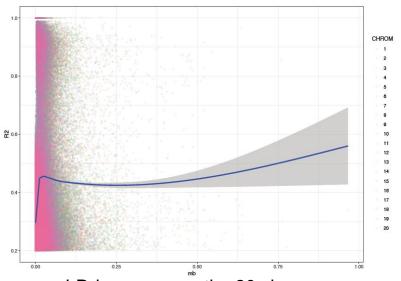




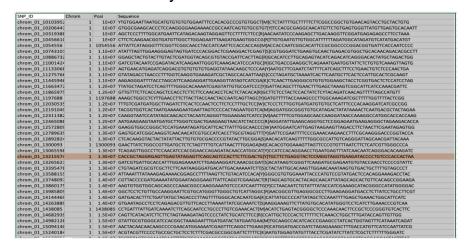



## Middle density SNP markers


#### Highly Informative SNP Marker Panels in Yam







LDdecay across the 20 chromosomes



A total of 3092 SNP markers selected across the yam genome including the QC/QA the traits associated markers



www.iita.org | www.cgiar.org

## \*Additional yam reference genome



https://data.cimmyt.org/dataset.xhtml?persistentId=hdl%3A11529%2F10548882





#### Ongoing molecular activities

- Deployment of MAS in the breeding program
- Annotation and gene model prediction
- Gene expression analysis for semi-dwarf genotypes
- Validation of middle density SNP markers and deployment for product advancement and for GPCP
- Identification of tolerant/resistant inter-specific genotypebased marker coupled with quantitative method
- Variety tracking and monitoring adoption of improved yam varieties
- Implementation of GS and prediction
- Effect of heterozygosity level on trait association



# Take home message



QC/QA markers were successfully developed and deployed in yam breeding for routine activities



Trait linked markers developed and deployed for MAS for key traits; ongoing work on validating additional markers



Middle density SNP markers developed and in the process of validation for GS as well as for GPCP



Additional reference genome developed to accelerate discovery in yam with the support of EiB/CtEH



Continuing application of low, middle and high-density SNP markers in the breeding program for breeding optimization.





## **Acknowledgements**



# Excellence in Breeding

















Total Quality. Assured.







