

Africa Rice: Number of Parents, Optimal Number of Crosses

EIB-Roslin Collaboration June 1st 2020

1. Introduction to the problem

Crop by Region

Africa Rice (Irrigated Lowland)

Problem Specification

1. Crossing pool with 80 parents, only 10-20 new parents each year.

2. Optimal combination (range) of crosses/year and individuals per cross.

Breeding strategy component tackled Crossing

Breeders' equation terms tackled *i* (& L)

Hypothesis

Using only/mainly new crossing parents will give higher rates of genetic gain. An optimized ratio of crosses/year and individuals/cross will give higher rates of genetic gain.

Excellence in Breeding Platform

2. Materials and Methods

Treat	Description
T1 (Baseline)	Current breeding program. Select 10 – 20 new parents each year. Use 80, 40 or 20 parents in total (= 3 different scenarios)
T2 (Grid)	A grid of different combinations of #parents (20-80, 5), #crosses (50-400, 25), #progeny (100-800, 10) under 1500-5000 genotype restriction

- Simulation: 20-year burn-in based on the current scheme (Baseline), and followed by 30 years of breeding for each treatment
- ➤ varGxY = 2*varG
- Genetic gain tracked at F2

Baseline (T1) – Number of Parents

	P1 x P2			80 parents \rightarrow 60 crosses					
			S	CENARIO	DS				
F1 ⊗ F2 ⊗ F3 ⊗ F4 ⊗	60 families 50 families – 800 inds 40 families – 800 inds 40 families – 800 inds	s/fam s/fam s/fam	•	20 parent 40 parent 80 parent	S S S				
F5 🛇	25 families – 500 ind	s/fam		1 env	1 rep	1x1m	(plant bulk)		
F6_PYT ⊗ F7_AYT ⊗	1000 individuals 300 individuals	10-20 new parents		4 env 4 env	2 rep 3 rep	2x2m 2x6m	(family bulk) (seed bulk)		
F8_onFarm	50 individuals	Number between 10-20 sampled each year		10 env	2 rep	3x5m	(seed bulk)		

Excellence in Breeding Platform

Baseline (T1) – Number of Parents

2 different simulated approaches of keeping old parents in the crossing pool

SCENARIOS

- 20 parents
- 40 parents
- 80 parents

10-20 best inds in F7 used to replace oldest parents in crossing pool (sliding window)

3. Results – T1 (1)

- > Initial increase in gain when switching from 80 to 20 parents
 - \rightarrow reduce number of old parents
- Highest rate of genetic gain with 20 parents

3. Results – T1 (2)

➤ Less extreme, but same trends as observed for (1)
→ reduce number of old parents

Grid (T2) – Optimal resource allocation

	P1 x P2 🔸			Parents: Crosses: Inds/cross:	20, 25, 30,, 75, 80 50, 75, 100,, 375, 400 100, 125, 200,, 775, 800	600 nbs
F1 🛇	60 families			RESTRIC	TIONS	
F2 🚫	50 families – 800 inds/fa	am		Range	36,000 – 40,000 Inds	
F3 🚫	40 families – 800 inds/fa	am		Max.	32,000 Inds 215 combs	5
F4 🚫	40 families – 800 inds/fam			E.g. 300 fa	milies x 125 inds/fam = 37,500	
F5 🛇	25 families – 500 inds/fa	am				
F6_PYT 🛇	1000 individuals					
F7_AYT 🛇	300 individuals –	10-20 new parents				
F8_onFarm	50 individuals	Number between 10-20 sampled each year				

3. Results – T2

Genetic gain at F2: 10 best-performing vs. 10 worst-performing Grid combinations

3. Results – T2

Genetic gain at F2: best-performing vs. worst-performing Grid combinations

Best-performing Grid combinations

Scenario	gainF2	nParents	nCrosses	nInd	nFamSelF3	nIndTotal
Scn99	54.74811	20	125	300	106	37500
Scn138	54.72041	20	75	500	64	37500
Scn125	54.70774	20	100	400	80	40000
Scn86	54.66407	20	150	250	128	37500
Scn112	54.64443	20	100	375	85	37500
Scn60	54.32868	20	200	200	160	40000
Scn151	54.29179	20	75	525	60	39375
Scn164	54.10404	20	50	725	44	36250
Scn73	54.06558	20	175	225	142	39375
Scn47	54.00171	20	225	175	182	39375
Scn177	53.95097	20	50	750	42	37500
Scn203	53.90649	20	50	800	40	40000

Worst-performing Grid combinations

Scenario	gainF2	nParents	nCrosses	nInd	nFamSelF3	nIndTotal
Scn122	46.48201	70	100	375	85	37500
Scn111	46.54047	80	125	300	106	37500
Scn175	46.61830	75	50	725	44	36250
Scn98	46.63992	80	150	250	128	37500
Scn110	46.70132	75	125	300	106	37500
Scn173	46.82771	65	50	725	44	36250
Scn85	46.83870	80	175	225	142	39375
Scn174	46.84175	70	50	725	44	36250
Scn148	46.88998	70	75	500	64	37500
Scn150	46.95179	80	75	500	64	37500
Scn213	46.98476	70	50	800	40	40000
Scn97	46.99248	75	150	250	128	37500

Excellence in Breeding Platform

3. Results from EA-Cassava (Dorcus & Chris)

Mixed Crossing Block (Year 60)

4. Conclusion

- 1. Don't recycle old parents (or, if absolutely necessary, restrict the number to a very few, not too old individuals...)
- 2. 20 (-30) parents each year is a good number for a breeding program
- → with 16 parents, all (16*15)/2 = 120 pairwise crosses could be made with more than 300 progeny per cross

Thank you for your interest!

