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Introduction 

In plant breeding programs, cultivars and materials of interest are often grown and tested at 

multiple locations across several years. Such a series of trials is called a multi-environment 

trial (MET), where a year–location combination is referred to as an environment. To quantify 

and eventually compare the precision of METs, plant breeders often calculate narrow-sense 

heritability (h2) or broad-sense heritability (H2) on a genotype-mean basis. The latter is 

defined as the proportion of phenotypic variance that is attributable to an overall variance 

for the genotype, thus including additive, dominance, and epistatic variance (Holland et al., 

2003; Falconer and Mackay, 2005; Schmidt et al., 2019). As a key factor in achieving high rates 

of genetic gain, enabling the timely development and release of varieties that meet consumer 

and farmer needs, a clear understanding of heritability is necessary in public sector breeding 

programs. 

This manual has three purposes: 

1. Provide clarity on the meaning of heritability. 

2. Show how to calculate heritability using suitable methods that allow for common 

understanding and transparency.  

3. Provide recommendations on robust methods for quantifying and comparing the 

precision of field trials in public sector breeding. 
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1.  Definitions and interpretations of heritability 

Multiple definitions of heritability exist, e.g., “the portion of the observed variance for which 

differences in heredity are responsible” (Knight, 1948), or “the extent to which a phenotype 

is genetically determined” (Lourenço et al., 2017). Moreover, there are several interpretations 

associated with heritability: (i) it is equivalent to the coefficient of determination of a linear 

regression of the unobservable genotypic value on the observed phenotype, (ii) it is also the 

squared correlation between predicted phenotypic value and genotypic value, and (iii) it 

represents the proportion of the selection differential (S) that can be realized as the response 

to selection (R) (Falconer and Mackay, 2005), among others (Schmidt et al., 2019). Although 

many definitions, interpretations and methods exist, all converge on the idea of quantifying 

the genetic signal from phenotype measurements (Figure 1).  
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Figure 1.  Graphical representation of phenotypic partition and three different heritability 

interpretations. In A) the phenotype (yij) is explained as the sum of an intercept (µ; mean) 

plus the effect attributed to the ith genotype (gi) plus the non-genotype effect attributed 

to other influences (eij) that confounds the genotype effect from other effects resulting in 

an observation. In B) 1) the heritability is described as the regression of the phenotype on 

the genotype, in 2) as the squared correlation between the phenotype and genotype and 

in 3) as the proportion of the selection differential that can be realized as the response to 

selection. All interpretations converge on the idea of quantifying the genetic signal from 

a phenotype. 

 

The phenotypic variance in broad terms can be divided between genetic variance (the portion 

of the phenotypic variance attributed to genetic differences) and error variance (the portion 

of the variance that cannot be attributed to genetic differences but to other factors such as 

environment, etc.). Some methods to estimate heritability use the variance component for 

the plot error (σ2
e) divided by the number of plots of each genotype to quantify the genetic 

signal, other methods use the average standard error of genetic estimates to derive the 

variance that cannot be attributed to genetic differences, and others use the slope of a 

regression (Figure 2). 
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Figure 2.  Example of two different ways to partition the genetic and the non-genetic variance 

needed for the computation of heritability. In A) the error variance component [i.e. 

estimated by restricted maximum likelihood (REML) or expected mean squares] is used 

in the denominator (σ2
e) to quantify genetic signal, whereas in B) the standard errors (s.e.i) 

squared (variances) of the genetic estimates (µi; in the example BLUEs) after statistical 

modeling can be averaged to quantify the non-genetic variance and put in the 

denominator (𝒗̅∆
𝑩𝑳𝑼𝑬) to quantify the genetic signal. 
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2.  Misconceptions of heritability 

Oldenbroek and van de Waaij (2015) summarize five major misconceptions regarding 

heritability: 

Misconception 1. “A heritability of x indicates that x% of the trait is determined by 

genetics” 

This is a very common misconception that arises from a misunderstanding of the definition 

of heritability. A heritability of 0.40 indicates that 40% of all the phenotypic variation for that 

trait is due to variation in genotypes for that trait. This differs importantly from the 

misconceived understanding that in each plant 40% of the expression of the trait is due to 

genes and the rest due to other influences. 

Misconception 2. “A low heritability means that traits are not determined by genes” 

A heritability that is larger than 0 always indicates that genes have an effect on the expression 

of the phenotype. The heritability is determined by the proportion of genetic variance relative 

to the phenotypic variance. A low heritability therefore can indicate that the genetic variance 

is low compared to the phenotypic variance (both could be small). For example, branching in 

maize is very much genetically determined, but because by far most genotypes used in 

modern maize programs have a single stem, the genetic variance for branching is very low. 

Misconception 3. “A low heritability means that genetic differences are small” 

A low heritability does not automatically indicate that the genetic variance is small; it can also 

indicate that the error variance is large. This can be caused by high environmental influence, 

for example, but also by inaccurate phenotype recording. For example, resistance to a certain 

infection will depend on the genetic potential to withstand that infection; the problem is how 

to measure that potential. If a single field measurement is taken of nematode infection in 

beat plants, it will record only those infected at that time, but this could vary according to the 

environment selected for recording infection levels. 
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Misconception 4. “A heritability is a fixed value” 

The heritability reflects the relative weight of the genetic variance component in the 

phenotypic variance of a specific population and is based on observations that were taken 

on a specific moment in time. The magnitude of heritability depends on genetic variance in a 

population, but also on the influence of the environment and on the accuracy of observations 

(see misconception 3). The genetic variance in one population may be (somewhat) different 

from that in another population. Finally, heritability within a population can change over time, 

and for that reason, should be estimated at regular intervals. 

Misconception 5. “A high heritability implies a major-effect QTL” 

The fact that the heritability quantifies the genetic signal from a phenotype doesn’t mean 

that says something about the genetic inheritance of the trait. Whether there’s one or many 

thousands of genes behind and irrespectively of their effect we can have high or low 

heritabilities. A major-QTL trait like eye color can have low heritability if the population 

scanned have only one type of eye color, or a high heritability of we observe all types of color. 

A highly quantitative trait like yield can have a high heritability is the experiment is well 

conducted with high appropriate replication levels, but can also have low heritability if the 

agronomic management is poor. 
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Figure 3. Common misconceptions of heritability. In 1), a misunderstanding of the concept results 

in the conclusion that a percentage of the phenotype is due to genes. In 2), the lack of 

variation resulting in low heritability is misunderstood to be consequence of no genetics 

contributing to the expression of the trait. In 3), a low heritability is misunderstood to 

reflect a small difference between genotypes when it could also be attributed to a large 

error variance. In 4), heritability is wrongly thought to be the always the same across time 

or populations. In 5), heritability is wrongly interpreted to be correlated to the number of 

large QTLs. In 6), the correct interpretation of heritability is provided. 
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3.  Methods to measure heritability 

Heritability is a useful concept in plant breeding and genetics, but given the many ways to 

generate phenotypic data (e.g. multiple reps, multiple years, multiple locations, along with 

the different levels of balance when measuring this metric) it has become difficult for 

breeders to choose which method to use. Here, we summarize some of the most suitable 

methods, of which the first is recommended as the most robust. Each method is 

demonstrated with an example, with a dataset that varies across examples in response to 

different issues with each method. Please keep in mind that heritability can be calculated for 

a single trial or for a multi-trial (or multi-environment; MET) experiment. We will touch on the 

single trial but the same principles can be extended to the MET scenario where the breeder 

will have to decide if heritability estimate has to be for each trial or for an across-trial. An 

excellent review of methods and code can also be found in Schmidt et al. (2019). 

Method 1. “Cullis’” broad-sense heritability method (Recommended) 

Cullis et al. (2006) propose a modern method that is widely used to account for the 

unbalanced scenario that plant breeders face in the single and multi-environment context 

with the advantage of not requiring every entry to have one rep. In this case, the genetic term 

is fitted as a random effect (BLUP). It uses the square of the standard error of the genetic 

estimates (across environments) to attain an approximation of the non-genetic variation 

(Figure 2). The formula is as follows: 

 

𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 −

𝑣̅∆
𝐵𝐿𝑈𝑃

2 𝜎𝑔
2

=  1 −
𝑃𝐸𝑉̅̅ ̅̅ ̅̅

𝜎𝑔
2

 

Where:  “σ2” refers to variance, “g” to genotype, 𝑣̅∆
𝐵𝐿𝑈𝑃 to the average BLUP difference or 

pairwise prediction error variance, and 𝑃𝐸𝑉̅̅ ̅̅ ̅̅  refers to the average prediction error 

variance from genotypes. Where the proof is as follows (Aparicio J. personal 

communication): 
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𝑣̅∆
𝐵𝐿𝑈𝑃 = 𝑉𝑎𝑟(𝑌̂𝑖 − 𝑌̂𝑖′) = 2𝑉𝑎𝑟(𝑌̂𝑖) = 2𝑃𝐸𝑉𝑖 

𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 −

𝑣̅∆
𝐵𝐿𝑈𝑃

2𝜎𝑔
2  

𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 −

2𝑃𝐸𝑉̅̅ ̅̅ ̅̅

2𝜎𝑔
2 = 1 −

𝑃𝐸𝑉̅̅ ̅̅ ̅̅

𝜎𝑔
2  

The advantage of this formula is that it can be calculated as part of a regular field trial 

analysis, can deal with unbalanced datasets and takes advantage from the random variable 

properties such as estimation of variance components.  

Example:  Assume a multi-environment trial (MET) run in four years across three locations 

in each year, for two repetitions in each year-location combination. After running 

a mixed model with genotypes fitted as random effects and the rest of terms as 

desired (see data and script available in additional material) the following 

parameters are obtained: 

 

genotype BLUP+ mu (s.e.)2|PEV 

1 5.01 0.0321 

2 4.52 0.0321 

3 3.73 0.0321 

4 4.52 0.0321 

5 4.99 0.0321 

∑ 𝒔. 𝒆𝟐𝒏
𝒊=𝟏

𝒏
 - 0.0321 

 σ2
g= 0.142; σ2

y= 0.4;  σ2
l= 0.2; σ2

yl= 0.6; σ2
error= 0.08; 𝑃𝐸𝑉̅̅ ̅̅ ̅̅ = 0.0321  

 𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 −

𝑣̅∆
𝐵𝐿𝑈𝑃

2∗𝜎𝑔
2 = 1 −

𝑃𝐸𝑉̅̅ ̅̅ ̅̅

𝜎𝑔
2 =  1 −

0.0321

0.142
= 0.775 
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As seen here, the calculation is straightforward, but it requires each individual to have more 

than one repetition in order to estimate a standard error for the estimates. It can be deduced 

that the 43% of the phenotypic variation can be attributed to genetic differences, and that 

there will be a response to selection. 

 

Method 2. “Standard” broad-sense heritability method 

This method is by far the most commonly used in the plant breeding community. This 

method provides the advantage of a straightforward calculation along with an intuitive 

parameter selection. Disadvantages include a tendency to overestimate values when data is 

unbalanced (different number of reps per genotype in single or multi-environment setting), 

as it assumes balanced datasets. 

 

𝐻𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
2 =

𝜎𝑔
2

𝜎𝑝
2

 

With:  𝜎𝑝
2 = 𝜎𝑔

2 +
𝜎𝑔𝑎

2

𝑛𝑎
+

𝜎𝑔𝑙
2

𝑛𝑙
+

𝜎𝑔𝑎𝑙
2

𝑛𝑎𝑛𝑙
+

𝜎𝑝𝑙𝑜𝑡
2

𝑛𝑎𝑛𝑙𝑛𝑟
 

Where:   “σ2” refers to variance, “n” to number of, “g” to genotype, “a” to years, “l” to 

locations, and “plot” to the plot error. 

Example:  Assume a MET run over four years across three locations in each year, for two 

repetitions in each year-location combination. After running a mixed model (see 

data and script available in additional material) the following parameters are 

obtained: 

σ2
g= 50; σ2

ga= 200;  σ2
gl= 100; σ2

gal= 10; σ2
plot= 300; na=4; nl=3; nr=2;  

𝜎𝑝
2 = 𝜎𝑔

2 +
𝜎𝑔𝑎

2

𝑛𝑎
+

𝜎𝑔𝑙
2

𝑛𝑙
+

𝜎𝑔𝑎𝑙
2

𝑛𝑎𝑛𝑙
+

𝜎𝑝𝑙𝑜𝑡
2

𝑛𝑎𝑛𝑙𝑛𝑟
=  50 +

200

4
+

100

3
+

10

4 ∗ 3
+

300

4 ∗ 3 ∗ 2
= 146.66 
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𝐻𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
2 =

50

146.66
= 0.34 

 

As seen here, the calculation is straightforward, but it assumes the same number of 

repetitions per year, and the same number of locations per year. It can be deduced that 34% 

of phenotypic variation (49 out of 146.66 trait units) can be attributed to genetic differences. 

  



 

12  

Method 3. “Ad hoc Holland” broad-sense heritability method 

Another method to calculate heritability was proposed by Holland et al. (2003) to address the 

possible differences in the number of replications or locations by year. The idea behind is to 

come up with a harmonic mean value for the denominators in the heritability formula.  

 

𝐻𝐻𝑜𝑙𝑙𝑎𝑛𝑑
2 =

𝜎𝑔
2

𝜎𝑝𝑛
2

 

With:  𝝈𝒑𝒏
𝟐 = 𝝈𝒈

𝟐 +
𝝈𝒈𝒂

𝟐

𝒏̃𝒂
+

𝝈𝒈𝒍
𝟐

𝒏𝒍̃
+

𝝈𝒈𝒂𝒍
𝟐

𝒏̃𝒂𝒍
+

𝝈𝒑𝒍𝒐𝒕
𝟐

𝒏̃𝒂𝒍𝒓
 

And:   𝒏̃𝒂 =
𝒏𝒈

∑
𝟏

𝒏𝒂𝒊

𝒏
𝒊=𝟏

, 𝒏̃𝒍 =
𝒏𝒈

∑
𝟏

𝒏𝒍𝒊

𝒏
𝒊=𝟏

, 𝒏̃𝒂𝒍 =
𝒏𝒈

∑
𝟏

𝒏𝒂𝒍𝒊

𝒏
𝒊=𝟏

, 𝒏̃𝒂𝒍𝒓 =
𝒏𝒈

∑
𝟏

𝒏𝒂𝒍𝒓𝒊

𝒏
𝒊=𝟏

 

Where: “σ2” refers to variance, “𝑛̃” harmonic mean of, “g” to genotype, “a” to years, “l” to 

locations, and “plot” to the plot error. 

Example:  Assume a MET run over four years (na) across 1-3 locations (nl) in each year 

depending on the year, for 1-3 reps (nr) per genotype in each year-location 

combination, depending on the year-location combination. After running a mixed 

model (see data and script available in additional material) the following data and 

parameters are obtained: 
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genotype na nl nr nal nalr 

1 4 3 2 4*3=12 4*3*2=24 

2 4 3 2 4*3=12 4*3*2=24 

3 4 2 1 4*2=8 4*2*1=8 

4 4 1 2 4*1=4 4*1*2=8 

5 4 2 3 4*2=8 4*2*3=24 

∑
𝟏

𝒏𝒙𝒊

𝒏

𝒊=𝟏

 1.25 2.66 2.83 0.66 0.375 

ng 5 5 5 5 5 

𝒏̃𝒙 =
𝒏𝒈

∑
𝟏

𝒏𝒙𝒊

𝒏
𝒊=𝟏

 
4 1.875 1.76 7.5 13.33 

 

σ2
g= 50; σ2

ga= 200;  σ2
gl= 100; σ2

gal= 10; σ2
plot= 300;  

𝜎𝑝𝑛
2 = 𝜎𝑔

2 +
𝜎𝑔𝑎

2

𝑛̃𝑎
+

𝜎𝑔𝑙
2

𝑛𝑙̃
+

𝜎𝑔𝑎𝑙
2

𝑛̃𝑎𝑙
+

𝜎𝑝𝑙𝑜𝑡
2

𝑛̃𝑎𝑙𝑟
=  50 +

200

4
+

100

1.875
+

10

7.5
+

300

13.33
= 177.17 

𝐻𝐻𝑜𝑙𝑙𝑎𝑛𝑑
2 =

50

177.17
= 0.28 

 

As seen here, the calculation is not as straightforward as in the previous methods presented 

but provides a more accurate estimate due to the use of harmonic means. It can be deduced 

that the 28% of phenotypic variation (49 out of 177.17 trait units) can be attributed to genetic 

differences. 
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“Piepho’s” broad-sense heritability method 

Given the regularity in which plant breeding programs face unbalanced data, alternative and 

more robust methods for estimating heritability been developed (Holland et al., 2003; Piepho 

and Möhring, 2007). The idea behind these methods is to obtain the non-genetic variance 

from the mean variance of a difference of two genotypic BLUEs, rather than attempting to 

deduce error variance from the plot error variance (divided by a factor that is a function of 

years, locations and replicates). The advantage of this method is it accounts well for 

unbalanced data since, as the squared standard errors or variance of the genetic estimates 

vary in size according to replication level, so the unbalanced data is directly account for. The 

disadvantage is that it requires at least two measurements of each individual to obtain a 

standard error, because the method is based on BLUEs (fixed effects): 

 

𝐻𝑃𝑖𝑒𝑝ℎ𝑜
2 =

𝜎𝑔
2

𝜎𝑔
2 + (𝑣̅∆

𝐵𝐿𝑈𝐸/2)
~

𝜎𝑔
2

𝜎𝑔
2 + (𝐸𝑉̅̅ ̅̅ /2)

 

 

Where:  “σ2” refers to variance, “g” to genotype, 𝑣̅∆
𝐵𝐿𝑈𝐸 to mean variance of a difference of 

two genotypic BLUEs and 𝐸𝑉̅̅ ̅̅  is the average variance of genotype BLUEs. 

 

Example:  Assume MET run over four years across three locations in each year, for two reps 

in each year-location combination. After running a mixed model with genotypes 

fitted as fixed effects and the rest of terms as random (see data and script 

available in additional material) the following parameters are obtained: 
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genotype mu (BLUE) (s.e.)2 

1 80 50 

2 56 60 

3 240 75 

4 100 80 

5 180 70 

∑ 𝒔. 𝒆.𝒏
𝒊=𝟏

𝒏
 - 67 

 

σ2
g= 50; σ2

a= 200;  σ2
l= 100; σ2

al= 10; σ2
plot= 300 ; 𝑣̅∆

𝐵𝐿𝑈𝐸 = 67 

 

𝐻𝑃𝑖𝑒𝑝ℎ𝑜
2 =

50

50 + (
67
2 )

= 0.59 

 

As seen here, the calculation is straightforward but it requires each individual to have more 

than one repetition in order to estimate a standard error for the estimates and requires two 

models to be fitted, one where the genetic term is fitted as fixed (to estimate 𝑣̅∆
𝐵𝐿𝑈𝐸), and 

another where the genetic term is fitted as random (to estimate σ2
g). It can be deduced that 

the 59% of the phenotypic variation can be attributed to genetic differences.  
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Method 5. “Walsh and Lynch” broad-sense heritability method 

This method proposed by Walsh and Lynch (2018) is also known as the BLUP-BLUE regression 

method and takes advantage from the fact that BLUP are shrunk by the factor σ2
e/ σ2

g 

whereas the BLUEs are not shrunk. This can provide an estimate of heritability a similar way 

to the Cullis method does [1 - (σ2
e/ σ2

g)]. In this method, the regression coefficient between 

the BLUP and BLUE turns out to be the inverse of the shrinkage parameter [β = 1 - (σ2
e/ σ2

g) 

= H2]. This method is robust but one disadvantage is the need to fit the linear model twice 

(genotypes fitted as fixed and random effects), which can be computationally intensive under 

certain scenarios. 

𝐵𝐿𝑈𝑃 = 𝛼 + 𝐻2 𝐵𝐿𝑈𝐸 

Where: “α” refers to the intercept, “H2” refers to the slope of the regression. 

Example: Assume a multienvironment trial (MET) run in 4 years in 3 location in each year, 

and 2 reps in each year-location combination. After running a mixed model with 

genotypes fitted as random effects and the rest of terms as desired (see data and 

script available in additional material) we have come up with the following 

parameters: 

genotype Environment u (BLUP) b (BLUE) mu 
b-mu 

(BLUE_scaled) 

1 1 0.501 5.107 4.47 0.628 

2 1 -0.004 4.478 4.47 -0.0009 

3 1 -0.784 3.499 4.47 -0.980 

4 1 0.006 5.037 4.47 0.010 

5 1 0.474 4.536 4.47 0.557 

…. … … … … … 



 

17  Germplasm and trait Introgression   

 

𝑏 =
𝑐𝑜𝑣(𝐵𝐿𝑈𝑃,𝐵𝐿𝑈𝐸)

𝑣𝑎𝑟(𝐵𝐿𝑈𝐸)
=

0.14

0.17
= 0.82 =  𝐻2   

 

As seen here, the calculation is straightforward, but it requires genotypes to be modeled as 

both fixed and random. It can be deduced that the 82% of the phenotypic variation can be 

attributed to genetic differences. 
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Conclusion and recommendations 

This manual has set out the correct interpretation of heritability alongside some common 

misconceptions to be avoided. Additionally, an overview was provided of the features, 

advantages and disadvantages of some of the more robust heritability calculation methods 

in order to promote the adoption of common and transparent methods among breeding 

programs. Among those, the Cullis method (Cullis et al., 2006) was recommended as a robust 

method to account for unbalanced datasets. In addition, the Piepho and Walsh & Lynch 

methods are also considered robust but require additional considerations.  
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Glossary 

BLUP: Best linear unbiased predictor. Statistical estimate for a random effect with 

distribution u ~ MVN(0, Σσ2
u) being Σ a relationship matrix among the levels of the random 

effect. Please see the EiB manual on BLUE vs BLUP to understand better the concepts of BLUE 

and BLUP. 

BLUE: Best linear unbiased estimator. Statistical estimate for a fixed effect with distribution 

β ~ MVN(𝛽̂, X’X-1) being Σ a relationship matrix among the levels of the random effect. Please 

see the EIB manual on BLUE vs BLUP to understand better the concepts of BLUE and BLUP. 

REML: Restricted maximum likelihood. Statistical methodology for estimating variance 

components by maximizing the probability of the having variance components with certain 

values given the observed data for a response variable (i.e. a trait phenotype). 

Harmonic mean: In mathematics, the harmonic mean (sometimes called the subcontrary 

mean) is one of several kinds of average, and in particular one of the Pythagorean means. 

Typically, it is appropriate for situations when the average of rates is desired. The harmonic 

mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the 

given set of observations. 

Random effect: Name assigned a covariate that aims to be fitted with the properties of a 

random variable with distribution u ~ MVN(0, Σσ2
u) being Σ a relationship matrix among the 

levels of the random effect. Please see the “How to” tutorial on BLUE vs BLUP to understand 

better the concepts of BLUE and BLUP. 

 

 

 


