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1  Estimating surrogates of genetic value   

Introduction and definitions 

Genetic value is the measure on which breeders most commonly rank and select among 

varieties, clones, families or individuals. This manual describes and compares different 

methods of estimating genetic value, with discussions of theory, strengths and weaknesses 

and practical examples.  

Genetic value is typically estimated from one or more trait values (which could be marker 

scores), from which an estimate of the genetic value of a line, family or individual can be 

derived. The genetic value may be for the trait(s) initially scored, or could be for a different 

trait: predicting yield from markers is a good example. 

In terms of classical genetics, the phenotype (P) is a linear function of genotype (G), the 

environment (E), and the interaction of these two. We know P and we wish to estimate G.   

For the purposes of this manual, we shall refer to G as the “Genetic Value”, which includes all 

sources of genetic determination in an individual: additive, dominance and epistatic.1  

For simplicity in this document, unless otherwise stated, all other sources of variation are 

subsumed within E, including genotype x environment interactions. 

 G, the Genetic Value, is the estimated parameter on which we usually select.  

 

  

 

1  The definition of G as “Genetic Value” rather than “genotype”, as it is usually interpreted, is to 

avoid confusion as genotype is often used to refer to genetic markers. Neither is G described as 

the “breeding value” since this has a precise meaning in terms of additive genetic effects and 

allele frequencies. 
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To describe different methods of estimating G, we start with the following model: 

y i j  = μ + g i + e i j 

 Where: 

 y i j  is the jth observation on individual i. 

 μ  is the mean. 

 g i  is the genetic value of individual i expressed as a deviation from the 

mean.  

 e i j  is the error of measurement, equivalently environmental noise, for 

observation i on individual j. 

For brevity, this manual addresses the genetic value of an individual or a line. A line will be 

used to refer to any unit of selection other than an individual: such as an inbred line, a hybrid, 

family, clone etc. Unless specifically stated, there is no discrimination between these types.  

A line, so defined, is made up of a set of individuals which need not be genetically identical, 

as long as we wish to estimate the genetic value of the line and not of the individuals 

contributing to it. For example, a line could be a full-sib family with observations collected on 

different family members. In this case the error of measurement – eij – incorporates the 

genetic deviation of each individual from the family mean; this does not usually affect the 

estimation of family genetic value in plant breeding as family sizes are usually large.  

Taking the above into account, this manual will cover six different methods of estimating 

genetic value, with guidelines for when each method should be employed.   
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1. Estimation from a single observation 

1.1 Method 

y i j  = μ + g i + e i j 

The estimate of the genetic value from a single observation of the trait represents the 

simplest form of surrogate for genetic value.  

1.2 Benefits 

Estimation from a single observation is recommended for: 

•  Highly heritable traits. 

•  Traits scored pre-reproduction in outbreeding species. 

•  Traits scored post-reproduction in inbreeding species. 

•  High intensities of selection, when applied to single plants. 

1.3 Constraints 

Estimation from a single observation is not recommended for: 

•  Low heritability traits. 

•  Traits which show a lot of GxE sensitivity. 

•  Post-reproduction traits. 
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2. Estimation from a mean of several observations 

2.1 Method 

 The arithmetic mean of a set of n observations is written as: 

μ+ĝ i  =  Σy i j  / n   =   Σ(μ+g i+e i j) / n 

 Where: 

 ‘^’  is commonly used to denote an estimate of the parameter.  

 μ  is common to all individuals and can be ignored. In comparisons 

between individual means it cancels as:  

  y1j/n - y2j/n = μ+ ĝ1 - μ+ ĝ2  =    ĝ1- ĝ2 

  

 The contribution of the environment, or of error, to the estimate of 

breeding value is: 

Σe. j / n 

 

As the number of observations contributing to the mean increases, the precision of 

estimating is also increased. Means based on different numbers of observations will 

therefore differ in precision (Figure 1). 
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Figure 1.  Precision of means increases with sample size. Simulated means from progressively 

adding one observation. Blue and red lines: true mean is 98 and 102 respectively, with 

error variance of 100. 

2.2 Benefits 

• Good for low heritability traits. 

• Increased accuracy. 

2.3 Constraints 

• Not the best method to infer genetic value if means are based on different numbers of 

observations (unbalanced designs). 

• Not the best method to infer genetic value if observations are made using different 

experimental protocols or methods. 
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3. Best linear unbiased estimate (BLUE) 

3.1 Method 

Observations on a line are commonly made on multiple replications of the line in different 

blocks within a trial and/or in multiple locations. Estimates of genetic value must take into 

account the varying contributions of these different nuisance factors to each observation.  

To accommodate this, the notation for our simple model is extended from yij = μ + gi + eij to 

the following: 

y i j k = μ i + g j + e i jk  

There are now several different terms for μ. For example, in a trial with six blocks there would 

be six means. The subscripts have changed too: I for the ith non-genetic effect, j for the jth 

genetic value. Each individual observation has its own personal error eijk. The subscript k is 

required since multiple observations may occur for line j in environment i. 

Parameters are estimated by least squares. The error sum of squares can be minimized as 

such:  

Σ(y i jk - μ i + g j)2  = Σe i jk
2 

The values of ui and gj are called the least squares estimates, used to minimize the error, 

whereas gj refers to the genetic values we require. 

In designed experiments with no missing data, the least squares estimates of gi can often still 

be obtained from the simple arithmetic means of the observations. This is true for a 

randomized complete block design for example. However, this does not apply if there are 

missing data or for an incomplete block design. In practice, a statistical package is commonly 

used to estimate BLUEs. 
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Matrix notation can also be used to express the BLUEs model. Matrix notation is used to help 

describe the more complex methods to estimate genetic value below.  

We can write the above model as follows: 

 y i j k = x1μ1  + x2μ2  + x3μ3  + .. . xmμm + x (m+1 )g1 + x (m+2 )g2  + 

x (m+3)g3 + … + x (m+n )gn + e i jk  

 Where: 

 xi  is an indicator variable. It takes the value 0 if a particular effect has 

no influence on an observation and a value of 1 if it does.  

 For example, with three blocks in a trial, the set of values {x1 = 0, x2 = 1, x3 = 0} would indicate 

an observation taken on the second block (x2 =1) and not on the first or third (x1 = 0, x3 = 0). 

Although this formula is more drawn-out, it is also more flexible. For example, x4 and x5 might 

indicate whether a trait was scored on one of two different dates. In this case, each 

observation would have two xi = 1 values: one for a block and one for date. Each line also has 

a personal x value, indicating whether that variety was present (1) or missing (0) from that 

plot. 
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This model can now be written in matrix notation as follows: 

 y = Xu + e  

 Where: 

 y is a vector of length n of the n observations 

 X is a matrix of 1s and 0s, of dimensions n observations x m 

parameters (i.e. m things to be estimated). 

 e  is a vector of length n of the n error terms.  

  

 The error sum of squares in matrix form is expressed as:  

(y – Xu) ’(y - Xu) = e ’e  

 And solved as:  

û = (X ’X)-1X ’y  

 

There is one additional complication: as it stands, X’X cannot be inverted. This is because the 

parameters, including the genetic values, are not independent.  

For example, with 10 lines, for a particular observation, if we know xi=0 for the first nine lines, 

then we know that x10 must equal 1. Similarly, with four replicates in a randomized complete 

block experiment, if x = 0 for three replicated, then we know that x must equal 1 for the 

fourth.  
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There are two main ways of accounting for this dependency: 

1. Treat the breeding values to be estimated, and the replicate effects (say) as deviations 

from an overall mean. In this case there are m-1 breeding values to be estimated and n-

1 replicate effects, along with an overall or experimental mean. The genetic value for the 

dropped variety is estimated as minus the sum of all the other varieties. Likewise, the 

genetic value for the dropped replicate is minus the sum of all the other varieties. This is 

the way GenStat works. 

2. Treat the estimated effect for the first replicate and first line as a reference and measure 

all other replicate and line effects as deviations from the reference. This the way R (using 

lm) works. 

 

These two methods will produce different mean effects, but the differences in genetic value 

between any pair of lines will be identical. For selection, therefore, it doesn’t matter which of 

these two parameterizations you use. 

This process is necessary whatever form of the model is used; it is not just a complication for 

matrix algebra. It may help to think in terms of degrees of freedom (df). For example, with n 

replicates and m lines, there are (nm-1) degrees of freedom. These can be partitioned into 

(m-1) df for (m-1) independent line effects, (n-1) for (n-1) replicate effects and (n-1)(m-1) 

degrees of freedom for error. Each df estimates one effect. 
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3.2 Example 

As an example, consider the following five observations of yield on five wheat lines: 

 

Yield (kg) Variety code μ V1 V2 

97.5 1 1 1 0 

86.2 1 1 1 0 

102.8 2 1 0 1 

108.9 2 1 0 1 

110.3 3 1 -1 -1 

 

There are two entries each of the first two lines and only one for the third line.  These have 

been coded for use in matrix notation as a column of 1’s for a mean effect (μ) and two 

columns (V1 and V2) for the three variety effects. The third variety is indicated by -1 in both 

the V1 and V2 columns: i.e. V3 is indicated as not-V1 and not-V2. 

Since there is no complication caused by the inclusion of blocks, the least squares estimates 

of the variety means are just the mean of the values for each variety: 

 

Variety Yield 

V1 91.85 

V2 105.85 

V3 110.30 

average 102.67 

 

Note that the mean of the three variety estimates is not the same as the mean of all entries 

in the experiment (101.14). This is a consequence of the unequal replication of the varieties.  
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To estimate these effects using the matrix method: 

 

X  X’ 

1 1 0  1 1 1 1 1 

1 1 0  1 1 0 0 -1 

1 0 1  0 0 1 1 -1 

1 0 1       

1 -1 -1       

 

X’X  (X’X)-1 

5 1 1  0.22222 -0.05556 -0.05556 

1 3 1  -0.05556 0.38889 -0.11111 

1 1 3  -0.05556 -0.11111 0.38889 

 

 

y X’y  u 

97.5 505.7  102.67 = estimate of mean 

86.2 73.4  -10.817 = BLUE for V1 

102.8 101.4  3.183 = BLUE for V2 

108.9     

110.3     

 

The BLUE for V3 is - (BLUE for V1 + BLUE for V2) = - (-10.817 + 3.183) = 7.633. 

We have three BLUEs for varieties, which is all that is required for selection.  
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If desired, we can estimate the mean effect of each variety by adding to the BLUE the estimate 

of the mean: 

 V1  =  102.67 – 10.817 =     91.85 

 V2  =  102.67 + 3.183 =   105.85 

 V3  =  102.67 + 7.633 =   110.30 

 

These are identical to the estimates obtained from the simple means, as they should be in 

this case. In more complex cases, for example with incomplete blocks, this is no longer the 

case, and the BLUEs are more accurate estimates of genetic value than simple means. 

3.3 Benefits 

Selecting on BLUEs is recommended for: 

• Balanced data with equal replication  

• Designed trials with experimental designs (i.e. incomplete block designs)  

• Comparison of advanced-trial materials with commercial checks 

3.4 Constraints 

Selecting on BLUEs is not recommended for: 

• Trials with variable replication (unbalanced) and precision among varieties 

• Selection of early generation materials 
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4. Best linear unbiased prediction (BLUP) 

4.1 Method 

The model used previously for estimation of genetic value from BLUEs is: 

 y i j k =  x1μ1  + x2μ2  + x3μ3 +.. . xmμm + x (m+1 )g1 + x (m+2)g2 +  

x (m+3)g3 + … + x (m+n )gn + e i jk  

  

 In matrix form: 

y = Xu + e  

 

There was no discrimination in estimation between the genetic values (the g terms) and the 

other effects (the μ terms).  BLUP treats the estimation of these effects differently. We 

partition the model as: 

y = Xu + Zg + e 

 Where: 

 g   is a vector of the genetic values we wish to estimate.  

 Z  is a matrix of 0s and 1s describing on which line the observation 

has been made.  

 Xu + Zg  is simply a split of the matrix used for BLUEs (also called Xu) 

vertically into two parts.  
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With this partition, the estimation of BLUEs is as follows:

[
𝑢
𝑔
] = [𝑋′𝑋 𝑋′𝑍

𝑍𝑋′ 𝑍′𝑍
]
−1

[
𝑋′𝑦

𝑍′𝑦
] 

The least squares estimates are as before, but now there is an explicit difference between 

the genetic values (g) and the other terms in the model (u).  

Writing the model in this form allows us to modify the estimation of genetic values. We treat 

the lines as “random effects” and the other factors as “fixed effects”.  Random effects can 

often be regarded as samples from a population, for example doubled haploid (DH) lines 

from an F2 population. Each DH line is one of a potentially infinite population of lines which 

could be produced.  

The population has an associated genetic variance, which we shall denote as σg
2. Fixed effects 

are the other factors we must include in the model to get fair and accurate estimates of 

genetic values. These are treated as having a common error variance, here denoted as σe
2, 

though the terms themselves cannot be regarded as samples from a population. Different 

fertilizer treatments are one example in plant breeding. More detail on the difference 

between fixed and random effects is provided in A2. 
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The estimation is made as follows: 

 [
𝑢
𝑔
] = [

𝑋′𝑋 𝑋′𝑍
𝑍𝑋′ 𝑍′𝑍 + 𝐼𝛾

]
−1

[
𝑋′𝑦

𝑍′𝑦
]  Note the modification to the bottom right 

corner of the matrix to be inverted. 

 Where: 

 I  is a square matrix of dimensions n x n (n = the number of genetic 

values to be estimated) with value 1 down the leading diagonal and 

0 elsewhere: it is an identity matrix.  

 γ  = σe
2/σg

2   

 γ   is closely related to heritability of a single observation (Figure 2). 

 h2  = σg
2 / (σe

2 + σg
2) 

 γ     = σe
2 /σg

2  =  (1-h2)/h2 

 h2   = 1/(1+γ)       

 

The modification therefore has the effect of inflating the bottom right corner of the matrix 

by adding σe
2 / σg

2 to the diagonal.  We shall see later that this is a special case of more general 

forms of BLUP.  

The consequence here is that the estimated genetic effects are identical to the BLUEs 

multiplied by the heritability of the line mean. Since heritability is always less than one, we 

say that the BLUPs are shrunk estimates of the BLUEs: 

The similarity between this relationship and the breeders’ equation is not coincidence: 

R = h2S 

Response to selection, R, is the predicted response from the current estimate of performance, 

S, shrunk by the heritability. BLUPs and BLUEs apply this relationship to single lines rather 
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than a selected group. The genetic value is the predicted future performance of a line on 

retesting. It is based on the current estimate of performance of the same line. 

Recall that the heritability of a line mean is calculated from the variance components as 

follows: 

h2   =  σg
2 /(σg

2 + σe
2/n) 

 Where:  

 n  is the number of observations.   

 

This has three important consequences for estimation using BLUPs: 

1. As the number of observations goes up, there is less shrinkage. 

2. If the number of observations is the same for all lines, then shrinkage is a constant 

proportion for all lines; the top 10% of lines on BLUEs remain the top 10% on BLUPs. 

However, if selecting lines above a threshold, say those exceeding the mean of the 

controls, then fewer lines may be selected using BLUPs. 

3. If the number of observations differs from line to line, then the heritability of each line 

mean will differ, and the degree of shrinkage will differ. This can change the ranking of 

lines and is therefore important. It can have a marked effect in p-rep trials in the early 

stages of testing, where γ can be high and the heritability of line means is low but can 

change markedly with replication. 
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4.2 Examples 

We shall consider first a simple case with balanced data. 

As an example, consider the following five observations of yield on three wheat lines: 

Yield (kg) 
Variety 

code 
μ V1 V2 V2 

97.5 1 1 1 0 0 

86.2 1 1 1 0 0 

102.8 2 1 0 1 0 

108.9 2 1 0 1 0 

102.1 3 1 0 0 1 

110.3 3 1 0 0 1 

 

This is the same example used to illustrate BLUE but with one additional observation on V3 

to give equal observations for all lines.  
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First, we estimate the BLUEs as before: 

X  X’ 

1 1 0  1 1 1 1 1 1 

1 1 0  1 1 0 0 -1 -1 

1 0 1  0 0 1 1 -1 -1 

1 0 1        

1 -1 -1        

1 -1 -1        

 

X’X  (X’X)-1 

6 0 0  0.16667 0 0 

0 4 1  0 0.33333 -0.16667 

0 1 4  0 -0.166667 0.333330 

 

y X’y  u  

97.5 607.8  101.3 = estimate of mean 

86.2 -28.7  -9.45 = BLUE for V1 

102.8 -0.7  4.55 = BLUE for V2 

108.9   4.9 = BLUE for V3 ( i.e. -V1-V2) 

102.1     

110.3     
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Next, we estimate the BLUPs. This adds a penalty to the diagonal of the entries to be shrunk 

in X’X, so that the original X is partitioned into a component for the fixed effects (X) and a 

component for the random effects (Z).  

It is assumed that:  σg
2 =  σe

2  = 1 

So that:   γ =  σe
2  / σg

2 =  1 

 

Firstly, γ = 1 corresponds to a heritability of 0.5 for an individual observation and not for a 

mean.  Secondly, once we treat the lines or individuals for which we wish to estimate genetic 

value as members of a population, there is no longer a requirement to add constraints of the 

form V3 = -V1 - V2. In essence, V1, V2, and V3 are treated as samples from a population with 

variance σg
2 and the need to impose a restraint so that they add to zero is removed. 
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y μ V1 V2 V3 

97.5 1 1 0 0 

86.2 1 1 0 0 

102.8 1 0 1 0 

108.9 1 0 1 0 

110.3 1 0 0 1 

 

X  Z  (X Z)’ 

1  1 0 0  1 1 1 1 1 1 

1  1 0 0  1 1 0 0 0 0 

1  0 1 0  0 0 1 1 0 0 

1  0 1 0  0 0 0 0 1 1 

1  0 0 1        

1  0 0 1        

 

(X’X     X’Z) 

(ZX’     Z’Z) 

  

6 2 2 2  

Exactly as before, prior to splitting the 

design matrix into fixed and random 

components. 

2 2 0 0  

2 0 2 0  

2 0 0 2  
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Next, we penalize the random components Z’Z by the addition of γ (with a value of 1 in our 

example) to the diagonal.  

In matrix terms: 

(X’X     X’Z) 

(ZX’ Z’Z + Iγ  ) 
 

(X’X           X’Z )-1 

(ZX’     Z’Z + Iγ ) 

6 2 2 2  0.5 -0.333 -0.333 -0.333 

2 3 0 0  -0.333 0.556 0.222 0.222 

2 0 3 0  -0.333 0.222 0.556 0.222 

2 0 0 3  -0.333 0.222 0.222 0.556 

 

The solution: 

y 
X’y 

Zy 
 [

𝑿′𝑿 𝑿′𝒁
𝒁𝑿′ 𝒁′𝒁+ 𝑰𝜸

]
−𝟏

[
𝑿′𝒚

𝒁′𝒚
]  

97.5 607.8  101.3 
= estimate of 

mean 

86.2 183.7  -6.3 = BLUP for V1 

102.8 211.7  3.033 = BLUP for V2 

108.9 212.4  3.267 = BLUP for V3 

102.1     

110.3     

The mean is identical to the estimate from the BLUEs analysis. The BLUPs are identical to the 

BLUEs multiplied by the heritability of the variety means, 0.67, and not the heritability of a 

single observation. which is 0.5. See Table 1. If the heritabilities are identical for each variety 

mean, there is no difference in ranking. However, the shrunk estimates may be more realistic, 

particularly in single replicate trials with low heritability. 
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Table 1. Shrinkage of estimates 

σg
2 =   σe

2  = 1 

h2
(2 reps) =  0.5/(0.5+0.5/2) = 0.6667 

BLUE BLUP BLUP/BLUE* 

-9.45 -6.3 0.67 

4.55 3.03 0.67 

4.90 3.27 0.67 

*Note that h2=BLUP/BLUE as suggested by the method of Walsh and Lynch referred in the 

heritability manual of EiB. 

4.3 Variance components  

To estimate the BLUPs, we require a population mean and variance. These can come from 

prior knowledge or other experiments. However, more commonly they are not known, and 

are estimated from the data together with other fixed effects. This is described in more detail 

in A1.  

The simplest case of BLUP described here can be extended to include multiple traits and 

environments. The more common uses of BLUP are described in the Annex. BLUP is 

increasingly used in preference to BLUE in trials. 

4.4 Benefits 

• Good for unbalanced data – lines with variable replication, especially p-rep designs. 

• Good for designed trials – including incomplete block designs. 

• Lines can be grouped into exchangeable sets. 
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• Good for selection of lines which exceed a fixed threshold, as opposed to selecting a 

proportion of lines. 

4.5 Constraints 

• Unnecessary for simple cases. 

• Unnecessary for uniform trials with equal replication. 

• Not best used for very heterogeneous sets of varieties (population structure). Consider 

fitting >1 random effect (see Annex). 

• Not best used for selection among lines with very variable genetic relationships. 

• Lack of understanding of the methodology. 

• Shrinkage of high-yielding lines can be unpopular with breeding program 

management.  
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5. Pedigree BLUP (pBLUP) 

5.1 Method 

Imagine testing a set of clonal lines from two different crosses, but that the four parents are 

unrelated. Thus, clones within a cross are related as full-sib individuals and clones from 

different crosses are unrelated. You are given a new line from one of the crosses. If it had no 

trait data, an obvious first estimate of its genetic value would be the mean of the other clones 

in the same cross. If the new line had extensive trait data, you would likely judge it directly 

on its own merits and ignore the data on siblings. When heritabilities of line means are lower, 

the ideal is to weight the two sources of information (cross mean and individual phenotype) 

to give a more accurate estimate of genetic value. This is the essence of pedigree BLUP 

(pBLUP).  

However, it is possible to take into account information from all relatives, not only siblings 

but also half-sibs, parents, progeny, second degree relatives and so on. The weighting of 

information from all relatives will vary with the degree of relationship: data on parents is 

more important than data on great-grandparents, for example. A key point to note is that 

now we are able to estimate the genetic value of a line even though it has no trait data.  

There are two ways to estimate genetic values incorporating information from relatives. The 

first is entirely empirical and is possible if individuals are grouped into families of the same 

type (full-sibs, half-sibs F2s etc.).  
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 We can partition the genetic value of a line into two parts: 

g i j = gbi + gwj  

 Where: 

 gbi  is the genetic value of the bth family  

 gwi   is  the genetic value of the deviation of the jth individual from the ith 

family. 

  

 These two components of the genetic value of an individual are independent and their values 

can be shrunk independently by their respective heritabilities, to give a BLUP for the 

individual in the following manner: 

g i j = h2
fpbi + h2

wpwj  

 Where: 

 h2
f  and h2

w  are between and within family heritabilities. 

 pbi is the deviation of the ith family mean from the overall 

mean. 

 pwj is the deviation of the jth individual from the ith family 

mean 

 

There is a slight complication depending on whether the phenotype of the individual under 

consideration also contributes to the family mean. If the family size is large, this makes little 

difference. If family size is small, it can be taken into account. An advantage of this approach 

is that it requires no genetics: the estimates of h2
f and h2

w can come from the data and 

require no genetic assumptions about relationships among individuals or the genetic 

composition of the trait or of the population from which the families were sampled. The 
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disadvantage of this approach is that it is hard to apply to more complex and variable 

pedigree relationships. To take these into account we must be explicit about an assumed 

starting population and also modify the mixed model equations again.  

The model remains unchanged however: 

y = Xβ+ Zg + e 

but now the effects are estimated as 

û   = (X ’R-1X  X ’R-1b)-1    X ’R-1y 

ĝ    (ZR-1X ’ Z ’R-1Z+G-1)    Z ’R-1y 

 

The definition of y, u, g, X, and Z is unchanged. 

R is new. It is a square matrix, of dimension n (the number of observations). It is the matrix 

of error variances and covariances associated with the e terms. R must be included if fitting 

a spatial model to a variety trial (most commonly using AR1 x AR1 or two-dimensional 

splines). We shall not discuss these further here. If errors are treated as independent (which 

is always valid in randomized trials but not necessarily optimal), then R-1 is a diagonal matrix 

with values 1/σe
2. In this case, all R terms cancel, and the solution is simplified. This is why we 

have omitted them previously. 

G is also new and is a square matrix of dimensions equal to the number of genetic values to 

be estimated. Its terms account for the genetic correlations or relationships among lines. For 

a simple BLUP, lines are treated as unrelated and G reduces to a diagonal matrix with 

element σ2
g. 1/σg

2 is then added to the diagonal of Z’R-1Z. If errors are also treated as 

independent and R is dropped from the solution, we must add σe
2 / σg

2  (or γ) to Z’Z to obtain 

the same solution as before. 
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In the form given here, and ignoring the fixed effects, the BLUPs can be regarded as BLUEs 

multiplied the multi-line analogue of heritability for line means: G / (G+E) compared to σg
2 / 

(σe
2 + σg

2) for a single individual. 

5.2 Composition of the G, genetic variance/covariance matrix 

In pBLUP, G is estimated from σg
2 in an ancestral or base population, in which all individuals 

are assumed to be unrelated and none-inbred. In this reference population, the covariance 

between individuals is 0 and the genetic variance of an individual is σg
2. Founders of the 

pedigree are treated as a sample of this population. Variances and covariances change 

among descendants of the founders and estimates of the changes are provided by the 

pedigree.  

G can be written as: 

G =  Kσg
2 

K is a matrix of relationships. Most commonly, this describes relationships resulting only 

from additive genetic variation. pBLUP can be extended to incorporate dominance and 

epistasis by including additional matrices for these effects but this is not described here. 

Common practice is to consider only additive variation in pBLUP and this is generally 

adequate since dominance and epistatic interactions are not inherited. The elements of K 

are the coefficients of the additive genetic (co)variance between the individuals in the dataset. 

In animal breeding, the matrix generally includes all founder individuals and ancestors of 

those in the dataset. Founders are assumed to be non-inbred. This makes the prediction of 

animal breeding values robust to the effects of selection within the pedigree.  

The diagonals of K are the coefficients of additive genetic variance for the individuals 

themselves. The off-diagonal entries in the table are coefficients of relationship, or twice the 

coefficients of kinship. The coefficient of kinship between two individuals is the probability 

than an allele picked at random from one individual is identical by descent (ibd) to an allele 
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picked at random from the other, or p(ibd). With no inbreeding, these coefficients are 1/4 for 

full-sibs and 1/8 for half-sibs. Other common relationships are shown in Table 2. For a 

population with no inbreeding, the diagonal entries of K are also coefficients of relationships 

or twice the coefficients of kinship. The p(ibd) of a non-inbred individual with itself is a half 

(the inbreeding coefficient of its selfed progeny), so the coefficient of relationship of an 

outbred individual with itself is double this, or one. 

 

Table 2.  Coefficient of relationship among commonly encountered relatives of outbred 

individuals 

Relationship Coefficient of relationship 

Itself 1 

Parent 0.5 

Full sib 0.5 

Half sib 0.25 

Grandparent 0.25 

Aunt or uncle 0.25 

Great-grandparent 0.125 

Unrelated individual 0 

 

In the absence of inbreeding, the complete relationship matrix required in the mixed model 

equations is twice the kinship matrix. In animals and in plant species which do not self, 

inbreeding only occurs if relatives mate.  
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In this case, elements of G are still genetic relationships or twice the coefficients of kinship. 

The diagonal elements, however, may be better viewed as 1+F; the coefficient of the additive 

genetic variance for an individual with inbreeding coefficient F. The diagonals will thus have 

a maximum value of 2 and a minimum of 1. Software used for estimation of pBLUPs will also 

compute the K matrix, though stand-alone packages also exist. The process for estimating K 

(or K-1) uses some simple recursive tricks.   

A small example pedigree and its corresponding relationship matrix is shown in Figure 2. 

 

 

Figure 2.  Example pedigree and corresponding relationship matrix. Top: Pedigree for eight 

individuals showing inbreeding coefficients of each individual. Bottom: Relationship 

matrix for the eight individuals. Matrix is symmetrical, only the lower half is shown. 

Diagonals are (1+F) where F is the inbreeding coefficient of the individual. Entries are 

coefficients of σg
2 for pedigree BLUP. 
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5.3 Example 

We shall add some pedigree information to the example with balanced data used previously 

for basic BLUP: 

 

Yield (kg) Variety code μ V1 V2 V3 

97.5 1 1 1 0 0 

86.2 1 1 1 0 0 

102.8 2 1 0 1 0 

108.9 2 1 0 1 0 

102.1 3 1 0 0 1 

110.3 3 1 0 0 1 

 

We now assume that individuals V1 and V2 are members of the same full-sib family and that 

the parents of V1 and V2 are unrelated. V3 is unrelated to V1 or V2. For simplicity, we shall 

also treat σ2
g = σ2

e, so that the matrix R =  R-1 = Iσe
2 and can be ignored, and G = Kσ2

g  = K.   
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The genetic variance/covariance matrix is therefore: 

G V1 V2 V3 

V1 1 0.5 0 

V2 0.5 1 0 

V3 1 0 1 

 

With inverse G-1 V1 V2 V3 

 V1 1.333 -0.667 0 

 V2 -0.667 1.333 0 

 V3 0 0 1 

   

(X’X     X’Z) 

(ZX’ Z’Z) 

Identical to the previous 

balanced example for BLUP 

6 2 2 2  

2 2 0 0  

2 0 2 0  

2 0 0 2  

 

Adding G-1 to Z’Z: 
(X’X     X’Z) 

(ZX’ Z’Z+G-1) 

 6 2 2 2 

 2 3.333 -0.667 0 

 2 -0.667 3.333 0 

 2 0 0 4 
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Solution: 

y 

X’y 

Z’y 

 

(X’X              X’Z)-1   (X’y) 

(ZX’      Z’Z + Iγ)     (Z’y) 
 

97.5 607.8  101.79 = estimate of mean 

86.2 183.7  -5.705 = BLUP for V1 

102.8 211.7  1.295 = BLUP for V2 

108.9 212.3  2.940 = BLUP for V3 

102.1     

110.3     

 

5.4 Benefits 

• BLUPs can be estimated for individuals with no trait data. 

• Historical deep pedigrees may be available. 

• Good for outbreeding species with validated pedigrees. 

• It accounts for the population structure issues found with regular BLUP. 

5.5 Drawbacks 

• Pedigree errors and inconsistencies will affect estimates. 

• Assumption that all founders are unrelated outcrossed members of the same 

population are rarely true and dealing with selfing species is problematic. 

• Cannot estimate genetic value of any individual with missing pedigree information. 

• Cannot discriminate between individuals from the same cross. 
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5.6 Comparison of BLUE, BLUP and pBLUP methods 

The genetic values obtained for the example data using BLUE, BLUP and pBLUP are 

presented in Table 3. 

 

Table 3.  Comparison of three genetic value estimation methods (BLUE, BLUP and pBLUP) 

using example data.  

 BLUE BLUP pBLUP 

V1 -9.45 -6.3 -5.705 

V2 4.55 3.03 1.295 

V3 4.90 3.27 2.940 

 

Using pedigree BLUP, the full-sib relationship between V1 and V2 has moved their estimated 

genetic values towards each other compared with basic BLUP. Running the example above 

with increased or decreased estimates of relationship between V1 and V2, and varying σ2
g  

(i.e. scaling G = Kσ2
g up or down) confirms the intuition that: 

If relationships are strong: pBLUPs are similar. 

If relationships are distant: pBLUP and basic BLUP are equivalent. 

If heritability is high: pBLUPs approach BLUEs. 

If heritability is low: pBLUPs approach zero. 
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Figure 3. Shrinkage of BLUPs from BLUEs and the breeder equation are equivalent 
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Figure 4.  Selection on BLUPs is more accurate than selection on BLUEs when lines are tested 

with unequal replication. Selection on BLUE (top) selects disproportionately many 

lines tested in one replicate with low true genetic values (X axis). Using the same data, 

selecting on BLUP (bottom) selects more entries tested in two replicates with higher 

true genetic values. 1,000 lines simulated, half tested in one replicate (blue) and half 

in two (red). Genetic variance = error variance = 0.5. 
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6. Genomic BLUP and ridge regression BLUP  

Genomic BLUP (gBLUP) and ridge regression BLUP (rrBLUP) are both closely related methods 

and so are considered together here.  

6.1 gBLUP method 

gBLUP is conceptually similar to pedigree pBLUP, but overcomes many of the problems 

associated with it.  

The model for genetic value in gBLUP is exactly the same as pBLUP: 

y = Xμ  + Zg + e 

Effects are estimated in the same way for gBLUP as in pBLUP: 

û =  (X’R-1X  X’R-1Z       )-1     X’R-1y 

ĝ   (ZR-1X’  Z’R-1Z+G-1)     Z’R-1y 

The difference between gBLUP and pBLUP is that the matrix G expressing genetic variances 

and covariance among lines or individuals. However, just as for pBLUP, G is written in terms 

of relationships among individuals as: 

G =  Kσg
2 

In this case, K is now estimated from a genome-wide set of genetic markers. Since markers 

segregate within crosses, marker estimated relationships can also vary within crosses. This 

is the major advantage of gBLUP over all the previous methods described: genetic values 

among individuals within a cross can now be predicted by exploiting these relationships.  
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Methods of estimating K are described in A5. 

6.2 rrBLUP method 

A simple way of predicting genetic values from traits is to create a marker index and use least 

squares estimates from multiple regression of a trait on a set of markers. The regression 

equation can then be used to predict missing trait values from marker scores. However, this 

will only work if there are more individuals in the dataset than there are markers: with n 

individuals there are n-1 degrees of freedom in a regression. Each SNP requires 1 df to 

estimate its regression coefficient, which restricts the number of biallelic markers to n-1. 

 

Returning to our initial least squares equations: 

y = Xu + e 

 y is a vector of length n of the n observations 

 u is a vector of fixed effects: here a mean and the m marker effects  

 X is now a matrix of marker scores, of dimensions n by (m+1). 

 e  is a vector of length n of the n error terms.  

 

This is solved as:  

û = (X’X)-1X’y 

 

This is only possible by least squares if there are fewer markers than observations. However, 

we now switch from treating the markers as fixed effects to treating them as random effects.  
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Shrunk regression coefficients are estimated as follows: 

 û = (X’X           X’Z)-1   X’y 

 ŝ  (ZX’     Z’Z + Iλ)   Z’y 

 

λ is a penalty which is added to the diagonal of Z’Z with the consequence that the estimates 

of each marker effect, ŝ, are shrunk. In effect, we are applying BLUP to the marker effects. It 

is remarkable that this allows any number of marker effects to be estimated. Geometric 

explanations can be found in the Recommended literature on ridge regression. 

The solution is analogous to the use of a penalty γ = σe
2 / σg

2 in simple BLUP. Suppose our 

genome wide set of markers was adequate to capture all the genetic variation for a trait. 

Suppose further, that each marker captured an equal amount of the available genetic 

variation. In this case, the expected variation captured per marker is σg
2/m for m markers 

and we can apply a penalty: 

λ  = σe
2 / ( σg

2/m) = mσe
2 / σg

2 = mγ 

Where trait heritability is 0.5, which is often a reasonable first approximation in yield trials, λ 

refers to the number of markers. 

When λ = σe
2 / ( σg

2/m), this specific form of ridge regression is called rrBLUP. Provided 

markers are coded and standardized in the same manner, it can be shown that the solutions 

to rrBLUP should be identical to gBLUP and will give the same predicted genetic values.  

Since gBLUP is numerically easier to solve than rrBLUP (since the matrix to be inverted is of 

dimension n x n individuals [usually hundreds], rather than of m x m markers [often 

thousands]) it is easier to work with gBLUP equations, then transpose the solution to provide 

the (shrunk) marker effects if these are also required. 
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6.3 Example of gBLUP 

We shall use the same data on three individuals as in the previous examples, but substitute 

the kinship matrix K calculated from six markers as described in A5.3 for the pedigree-based 

relationship matrix used previously. 

 

Yield (kg) Variety code μ V1 V2 V3 

97.5 1 1 1 0 0 

86.2 1 1 1 0 0 

102.8 2 1 0 1 0 

108.9 2 1 0 1 0 

102.1 3 1 0 0 1 

110.3 3 1 0 0 1 

 

Previously, V1 and V2 were treated as members of the same full-sib family. This is 

unnecessary when using realized genomic relationships, though knowledge of this can help 

in interpreting results. For simplicity, and consistency with the pBLUP example, we shall treat 

σ2
g = σ2

e so that the matrix R =  R-1  = I and can be ignored and G =Kσ2
g  =K.   

The genetic variance/covariance matrix, estimated from the six markers (A5.3) is therefore: 

 

KK’ = G V1 V2 V3 

V1 4.744 5.093 -0.488 

V2 5.093 6.605 -0.721 

V3 -0.488 -0.721 0.674 
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with inverse G-1 V1 V2 V3 

 V1 1.236 -0.968 -0.140 

 V2 -0.968 0.930 0.293 

 V3 -0.140 0.29 1.695 

  

(X’X     X’Z) 

(ZX’ Z’Z) 

Identical to the previous 

balanced example for BLUP 

6 2 2 2  

2 2 0 0  

2 0 2 0  

2 0 0 2  

 

Adding G-1 

to Z’Z: 

(X’X     X’Z) 

(ZX’ Z’Z+G-1) 

 6 2 2 2 

 2 6.74 5.093 -0.488 

 2 5.093 8.605 -0.721 

 2 -0.488 -0.721 2.674 

 

With inverse 
(X’X       X’Z)-1 

(ZX’ Z’Z+G-1) 

 0.779 -0.717 -0.730 -0.391 

 -0.717 1.003 0.784 0.364 

 -0.730 0.784 1.065 0.340 

 -0.391 0.364 0.340 0.469 
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And solution y 

X’y 

Z’y 

 

(X’X      X’Z)-1      (X’y) 

(ZX’  Z’Z + G-1)  (Z’y) 

 

 97.5 607.8  104.377 = estimate of mean 

 86.2 183.7  -8.246 = BLUP for V1 

 102.8 211.7  -1.801 = BLUP for V2 

 108.9 212.4  0.817 = BLUP for V3 

 102.1     

 110.3     

Table 5 compares estimates for BLUE, BLUP, pBLUP and gBLUP, before and after rescaling 

the means of the BLUPs to zero for ease of interpretation. 

6.4 Benefits 

• Prediction within crosses. 

• Increased accuracy of field trials. 

• Single cross prediction (i.e. hybrid prediction). 

• Optimal contribution methods. 

6.5 Drawbacks 

• Low marker density with complex family structures. 

• Datasets in which some individuals cannot be genotyped: e.g. ancestral lines for which 

no seed is available, but for which there may be pedigree and trait data. 
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Annexes 

A1. Residual Estimation by Maximum Likelihood (REML) and estimation of 
variance components. 

BLUPs require estimates of population means and variance components (minimally σe
2 + σg

2). 

Generally, the software we use to estimate BLUPs will also estimate these from the data. 

REML (Residual Estimation by Maximum Likelihood) is the default method in most packages. 

It has the advantage that it gives identical estimates of variance components, and therefore 

identical estimates of BLUEs and BLUPs, to those obtained by least squares estimates of 

variance components. This gives us confidence in using REML in cases where least squares 

estimates cannot be made.  

For some of the examples used in this document, the BLUPs are not simply the BLUEs x h2.  

This is because the estimates of the mean and the random effects are correlated. In datasets 

of the size encountered in practice in breeding, this is not a problem, but it can make a 

difference in very small datasets. 

A2. Distinguishing fixed and random effects. 

With the availability of good computer statistical packages, there is no requirement to be able 

to write down the analytical models and solve by matrix algebra as illustrated in our 

examples. It is important, however, for the user to be able to describe the model, even in 

longhand, and to understand which effects are treated as random effects and which fixed.   

It is not necessary for the lines under testing to be members of a well-defined genetic 

population. A less stringent requirement is that the lines can be regarded as exchangeable. 

This means that the outcome or interpretation of the experiment is not affected by switching 

their coding. If line 20, say, was no longer treated as line 20 but as line 135, would this matter? 
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If not, then the lines are exchangeable and can be regarded as members of a common group 

for which BLUPs will be estimated.  

For example, suppose lines 20 and 135 were clones being tested for the first time in a 

preliminary yield trial. They are new and unknown, and swapping their labels would have no 

outcome on how you judge their genetic values. Such a collection of lines could be tested in 

a p-rep design for example, saving space and money or allowing more lines to be tested, 

without worrying that the breeding value of one particular line was shrunk more than 

another. However, suppose line 135 is being tested for the first time, but line 20 is being 

retested after selection in the previous season. In this case, you are likely to want to treat 

new lines and retested lines differently; they are not exchangeable. 

Equivalently, in analyzing a collection of lines of different type, say if inbred and hybrid lines 

were in the same trial, or if the lines under test were a mix of full-sib and half-sib families, 

then these would be expected to have different values of σg
2. This can be accommodated by 

having separate random effects for each type. 

A3. Additional random effects: the mixed model in variety trials 

The estimation of breeding values described in our examples has treated individuals as 

random effects and the mean as the only fixed effect. Other factors included in an 

experiment may be treated as either fixed or random. It is common practice in variety trials 

for the varieties to be treated as fixed, with BLUEs to be estimated, and the blocks, whether 

complete replications or incomplete blocks, to be treated as random.   
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Such a model could be written as follows:  

y = Xg + Zβ + e 

 Where: 

 β  is a  vector of block effects. BLUPs for these can be estimated, but 

we are not usually that  interested in them. 

 Z is the design matrix – allocating blocks to observations. 

 g is the vector of genetic values we wish to analysed, commonly 

estimated as BLUEs. 

 X is the design matrix allocating varieties to observations. 

 e is the usual vector of error effect. 

Estimation can proceed as before.  In this case, the variance component for block effects is 

always estimated from the experiment itself. The advantage of treating blocks as random 

rather than fixed is that there is some information of differences between varieties which is 

locked into estimates of differences between blocks, and this information can be released 

and incorporated into the estimates of variety effects to improve their precision. This process 

used to be referred to as “recovery of inter-block information” and predates current methods 

of estimation and terminology. The information recovered is greatest when block effects are 

of intermediate variability.  

If block effects are large (typically in a bad trial), the blocks variance is also large so that block 

effects are hardly shrunk at all, and the BLUEs for variety effects are little changed in value 

or precision. If block effects are small, the blocks variance approaches zero (and blocks could 

be dropped from the model) and the variety BLUEs approach simple arithmetic means. With 

modest block effects however – as is often the case – there is information to be recovered 

and the precision of the BLUEs is improved. 
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There has been a near-philosophical discussion about whether blocks should be treated as 

fixed or random. The exchangeability argument above helps to establish them as random. 

The process of randomization of varieties over blocks also validates this choice: in general it 

is not important which variety gets allocated to a particular block.  

This model (varieties fixed, blocks random) remains the most commonly used method of 

estimating variety performance globally, though it can frequently be improved. Variety 

effects, if exchangeable, can be treated as random and error variances may be better 

modeled, as described in A4. 

A4. Multiple random effects 

In the previous discussion, both lines and blocks can be treated as random effect. Multiple 

fixed effects could also be included, but first we shall consider only the mean. The model can 

be written as: 

y = Xμ  + Z1βg1+ Z2g2 +  e 

 μ  Is a vector of fixed effects. 

 X, Z1, Z2 Are matrices allocating the fixed effects 

 μ   Random block  effects 

 g1 and g2  The genetic values to each observation.  

 

 If just the mean is included in the model, X is a vector of 1s. 
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The effects are estimated as: 

 (û)    (X’X            X’W       X’Z      )-1    (X’y) 

 (ĝ1) = (W’X    W’W + Iγ1        W’Z     )      (W’y) 

 (ĝ2)  (Z’X       Z’W     Z’Z + Iγ2)  ( Z’y) 

 

 γ1 is σe
2/σb

2 

  (Where  σb
2  is the blocks component of variation, estimated from 

the data) 

 γ2   is σe
2/σg

2  

  (As before)  

Different penalties are therefore added to the diagonals of W’W and Z’Z depending on the 

relative magnitudes of the variance components for blocks and lines. 

We can extend the model by more complex relationships among the residual errors terms 

(such as correlations between adjacent plots in AR1 x AR1 designs, and correlations among 

the random effects (such as genetic relationships among varieties or individuals) in which 

case BLUPs and BLUEs are estimated as: 

 (û)  (X’R-1X X’R-1W        X’R-1Z) -1   (X’R-1y) 

 (ĝ1) = (W’R-1X W’R-1W + G1
-1       W’R-1Z)  (W’R-1y) 

 (ĝ2)  (Z’R-1X Z ’R-1W    Z’Z+ G2
-1)     (Z’R-1y) 

 

 G1
 is the variance covariance matrix among the g1 random effects.  

 G2
 is the variance covariance matrix among the g2 random effects.  
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There is no requirement to stop here: additional random terms could be added, each with 

separate variance components. For example, in variety trials, if one set of lines were F1 

hybrids and another inbred lines, BLUPs for each could be estimated independently.  This 

seems complicated, but at heart, we are simply adding a matrix of penalty effects to the 

bottom right the variance/covariance matrix (anything involving W and Z). The penalty effects 

vary from method to method and from experiment to experiment, but the basic principle is 

the same: penalize the bottom right and leave the fixed effects in the first set of rows and 

columns untouched. If each observation can be treated as independent, with uncorrelated 

errors (always valid with randomization), then R can be ignored too. 

Fortunately, provided that we can specify the model in terms of fixed and random effects, 

together with the variance/covariance structure of the random effects, there is no 

requirement to write down the mixed model solutions: the software will take care of the 

estimation for us. With very complex models however, the software sometimes struggles too. 

A5. Estimation of relationships from markers 

Given its central importance in GBLUP,  the estimation of K has received much attention. 

Here we describe the two most common methods. 

A5.1. Identity by state 

If two alleles are identical (e.g. both are the same nucleotide for a SNP or both are the same 

repeat length for a microsatellite) they are called identical by state (IBS). This terminology is 

to distinguish IBS from identity by descent (IBD) which will not be described here.  Consider 

two diploid individuals.  At a single locus they may carry 0, 1 or 2 alleles in common. If we 

chose an allele at random from each individual, we can assign a probability that the two 

alleles are identical. Table 4 gives examples. 
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Table 4.  Example p(IBS) between pairs of individuals 

Individual 1 Individual 2 p(IBS) 

A1A1 A1A1 1 

A1A1 A1A2 0.5 

A1A2 A1A2 0.5 

A1A2 A1A3 0.25 

A1A2 A3A4 0 

A1A1 A2A2 0 

 

Subscripts represent four alleles. For a SNP there are only two; for a microsatellite there 

could be many. Over multiple loci, the average p(IBS) is an estimate of the relationship of a 

pair of individuals. 

A feature of p(IBS) is that the relationship of an individual with itself is 1 for and inbred line 

and 0.5 for a completely heterozygous individual, while the relationship between two 

completely different individuals is zero: in line with expectations from pedigree relationships.  

For use in the mixed model equations, relationships estimated by p(IBS) would be doubled 

for a diploid, so that the diagonal of K would be 2 for an inbred line and 1 for an outbred 

individual. If this is not done however, it simply means that the estimate of σg
2 will be doubled 

to compensate and the estimates of genetic value will still be correct: that is to say, the BLUPs 

will still be correctly shrunk. 

Advantages of p(IBS) are that it is simple to understand, is easily calculated for all ploidy 

levels and is easily applied to multi-allelic loci. 

A5.2. van Raden’s method. 

IBS relationship matrices are not the favored method, as they treat all alleles and loci equally, 

yet a match between two rare alleles is more indicative of close relationship than a match 
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between two common alleles. Biallelic markers are usually called by the numbers of copies 

of the reference allele an individual carries: 0, 1, 2 for a diploid or 0, 1, 2, 3, 4 for an 

autotetraploid. The common practice is to standardize such marker scores to a mean of zero 

by subtracting twice the reference allele frequency for a diploid, four times the reference 

allele frequency for a tetraploid and so on. After standardizing, the relationship between a 

pair of individuals is estimated as the average of the cross product of these standardized 

variables. Since carriers of rare alleles have a greater deviation from zero, a match of rare 

alleles now indicates a closer relationship than a match of common alleles. Writing the matrix 

of standardized variables as W with rows equal to the number of individuals, and columns 

equal to m, the number of markers, the relationship matrix is: 

 

K = WW'/2Σ pkqk 

or 

rij =  Σ [(wik-2pk)(wjk-2pk)]  /  2Σ pkqk 

 

Many modifications and alterations to this method have been published and discussed, but 

this has withstood the test of time and is the default method in many packages. 

For autopolyploids, this becomes: 

  G = WW'/[trace(WW')/n] 

 Where: 

 n is the number of individuals (not the number of markers) 
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For diploids, the diagonal elements (the relationship of an individual with itself) is an estimate 

of 1+F.  

The individual values of K can be less than zero. This is in contrast to pedigree estimates, 

which must lie between 0 and 2. The negative values of the genomic relationship matrix must 

not be set to zero. A relationship of zero should be regarded as an average relationship 

among the lines contributing to the dataset. Pairs of lines may be less related than the 

average and will therefore have estimates of relationship below 1. Similarly, diagonal 

elements which are greater than 2 should be left alone.  

A5.3. Example calculation of relationship matrix (K) from three individuals using six 

markers. 

ID M1 M2 M3 M4 M5 M6 

1 2 0 1 2 1 2 

2 2 0 2 2 1 1 

3 1 2 0 0 0 2 

 

Markers are coded as the number of reference alleles carried by a diploid individuals. 

Assume these individuals come from a larger population with allele frequencies: 

M1 M2 M3 M4 M5 M6 

0.5 0.9 0.1 0.1 0.5 0.9 
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Standardize the marker scores to a (population) mean of zero by subtracting 2x the allele 

frequency. 

 M1 M2 M3 M4 M5 M6 

p(A) 0.5 0.9 0.1 0.1 0.5 0.9 

2pq 0.25 0.18 0.25 0.18 0.5 0.18 

Σ(2pq) 1.72      

 

ID M1 M2 M3 M4 M5 M6 

1 1 -1.8 0.8 1.8 0 0.2 

2 1 -1.8 1.8 1.8 0 -0.8 

3 0 0.2 -0.2 -0.2 -1 0.2 

 

Strictly, the allele frequencies used to adjust the marker scored should be those of the 

founder or ancestral population. In practice, the sample allele frequencies are commonly 

used and are acceptable provided the sample size is not too small (as here). Ignoring the ID 

column this is the relationship matrix, K (before scaling). 

K’ 

1 1 0 

-1.8 -1.8 0.2 

0.8 1.8 -0.2 

1.8 1.8 -0.2 

0 0 -1 

0.2 -0.8 0.2 
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KK’ 

8.16 8.76 -0.84 

8.76 11.36 -1.24 

-0.84 -1.24 1.16 

 

KK’ / Σ(2pq) 

4.744 5.093 -0.488 

5.093 6.605 -0.721 

-0.488 -0.721 0.674 

 

Although the values appear improbably high (a consequence of using only six markers), there 

are several points to note: 

1. The diagonals are generally larger than the off-diagonals: a relationship of an individual 

to itself is generally expected to be higher than its the relationship to other individuals. 

2. The off-diagonals can be negative.  

3. Individuals 1 and 2 appear to be closely related: high off-diagonal relationship: looking 

at the marker data they are identically homozygous at four out of the six loci. 

A5.4. Missing data 

Missing marker data causes problems in the estimation of K. Ideally, the missing data should 

be imputed. For most SNP data sets, after quality control, including removal of poor markers, 

the problem is slight and simply inserting the average genotype score is acceptable (which is 

zero after standardizing). For genotyping by sequencing, the missing data problem is extreme 

and one of the several methods to impute missing data must be used.  



 

56  

A5.5. A comment on the number of markers 

An assumption of GBLUP is that a high density of markers is used to estimate genomic 

relationships. The precise number will vary depending on the history of the population with 

which you are working. This can be tested by empirically by cross-validation.  

Trait data for a proportion of individuals, say 1/10th are removed from the dataset, and their 

genetic values predicted from their genomic relationships with the remaining 9/10ths of 

individuals. The accuracy of the prediction is assessed by correlation of observed and 

predicted traits. This is repeated for other subdivisions of the data and also repeated with 

varying numbers of markers. The relationship between prediction accuracy and marker 

number can therefore be quantified.  

For most plant breeding applications, as a rule of thumb, thousands but not tens of 

thousands of markers are required. In some very narrowly based populations, for example 

progeny from a single cross, many fewer markers, around a hundred, may give adequate 

prediction accuracy. 

Table 5.  Comparison of BLUE, BLUP, pBLUP and gBLUP from a small balanced dataset 

 BLUE BLUP pBLUP gBLUP 

V1 -9.45 -6.3 -5.705 -8.246 

V2 4.55 3.03 1.295 1.801 

V3 4.90 3.27 2.940 0.817 

Average 0 0 -0.490 1.493 

     

V1 -9.45 -6.3 -5.125 -5.169 

V2 4.55 3.03 1.785 1.276 

V3 4.90 3.27 3.430 3.894 

Average 0 0 0 0 
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All BLUPs are shrunk compared to the BLUEs. In this example, the pBLUPs and gBLUPs are 

shrunk to a similar amount. Just as in pBLUP, multiplying the relationship matrix K  by larger 

values of σg
2 increases the influence of the genetic variance/covariance matrix G on estimates 

of genetic value and BLUPs shrink less from the BLUEs. Reducing σg
2 towards zero causes the 

BLUPs to shrink towards zero. 

A6. Further methods and developments 

The method of gBLUP described here to estimate genetic value from markers is more than 

adequate for most breeding purposes. However, methods for trait prediction continue to 

attract research. Typically, newer methods or developments offer some improvements in 

prediction accuracy in some circumstances. However, compared to rrBLUP and GBLUP, the 

improvements are usually slight and not large enough yet to warrant a switch from these 

standards. In addition, the alternatives are often computationally more intensive, harder to 

understand, and software is less accessible. We list some below, with limited explanation or 

comment: 

1. “The Bayesian alphabet” is a set of methods – Bayes A, Bayes B …, which approach 

prediction using Bayesian statistics rather than through the mixed model approaches 

described here. 

2. Use of multiple sets of random effects, each with its own relationship matrix. For 

example, a separate genomic relationship matrix can be estimated for dominance 

effects, epistatic effects, or even for individual chromosomes or different marker classes. 

3. Machine learning methods. 

4. Feature selection methods. These select subsets of markers which appear, on their own, 

to give the best prediction accuracy. The easiest to understand of these is the LASSO, 

which is closely related to ridge regression but selects only a subset of markers whereas 

ridge regression includes all markers in the prediction equation. 
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5. Combined methods: pedigree BLUP and GBLUP can be combined. The lasso and ridge 

regression can be combined (called the elastic net). As a very simple example, BLUP and 

BLUE can be combined (some markers, tagging known QTL for example, could be treated 

as fixed effects and other markers as random effects). 

A6.1. Relationship matrix in autopolyploid species. 

Estimation of relationships for autopolyploid species differs from that for diploids. However, 

software is available, for example AGHmatrix. A ploidy-specific matrix should be substituted 

for the usual default diploid matrix used in most packages. 

A6.2. Relationship matrix in selfing species 

There are at least three major problems: 

Firstly, for fully inbred lines or doubled haploids, if there are no crosses between related lines, 

K is simply twice the equivalent matrix for an outbred population and standard pBLUP 

software can be used. Using a relationship matrix half of its actual value will be compensated 

for by estimation of σg
2 which is twice its actual value (recalling that σg

2 is the estimate for 

the outbred ancestral population of unrelated lines). However, this is rarely the case; 

published pedigrees for inbreeding species are always complex, for example in Figure 5, and 

the relationship matrix K will be incorrect.  
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Figure 5.  An example plant pedigree. Part of the UK wheat pedigree showing ancestors of the 

variety KWS Kerring. Derived from Fradgley et al. (2019) A large-scale pedigree 

resource of wheat reveals evidence for adaptation and selection by breeders. PLoS 

biology, 17(2), p.e3000071. 

This is easy to see: for inbred lines the relationship of an individual to itself is always 1, but in 

an outbreeding species this can vary between ½ and 1 depending on its inbreeding 

coefficient. At the moment, no pBLUP software exists which is explicit about the treatment 

of inbreeding species and that will ignore the distinction. The adverse consequences of this 

have not been described.  

Secondly, the way pedigrees are recorded in crops like wheat and barley is a shorthand 

approximation.  Line A x line B→ line C usually implies a number of generations between the 

AxB F1 and line C. Even for doubled haploids, the F1 is implicit rather than recorded in the 

pedigree. Kinship estimation can take this into account, but it is not routine.  
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Finally, the variety released and phenotyped often differs genetically from that used as a 

parent, even though they are recorded as identical. If selected lines are cycled quickly within 

the breeding program (good practice), then the parent could be an F3 of F4 individual to which 

the variety name is still attached. The released variety could be an F5:7 family, for example, 

and the F5 individual may not even be a direct descendant of the F4 individual used in crosses. 

This introduces errors, with unknown effect, into the estimate of K for selfing species. Two 

‘smoking guns’ for such problems are the seemingly very rapid cycling of lines in a 

conventional breeding program rather than the oft-quoted 10 years to create a variety in 

conventional breeding and miss-inheritance of genetic markers over and above the level 

expected from genotype errors. 

A6.3. Prediction of lines with no trait data 

pBLUP enables the prediction of genetic value for lines without a phenotype. It has a long 

history of use in estimating the genetic value of bulls for milk yield and cockerels for egg 

production. Use in crops has been more limited, though there are dioecious species (e.g. 

hemp, hops) where production is based on female plants but selection on the genetic value 

of males would increase response to selection. To estimate the genetic value of un-

phenotyped individuals, they are included as extra columns in the Z matrix, with entries of 

zero, and extra rows and columns in the G matrix with entries equal to kijσg
2, where the kij are 

relationships between the phenotyped and unphenotyped individuals. Corresponding 

estimates of genetic value are returned in g.   

Note however, that individuals or lines in the same cross or full-sib family will be predicted 

to have the same genetic value. Pedigree relationships cannot distinguish between 

individuals sharing the same parents. Trait information from more distant relatives will still 

be incorporated into the estimate, but Mendelian sampling variation within a family cannot 

be accessed by pedigree information alone.  


