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1  Selection Intensity 

Introduction 

Selection intensity is one of four terms in the full form of the breeders’ equation: 

 ΔR  =  h2S/t  =  ih2σp /t  =  ihσg/t 

 Where: 

 ΔR  is the rate of change in response to selection 

 S  is the selection differential 

 σp  is the phenotypic standard deviation 

 σg  is the genetic standard deviation 

 t  is the cycle time 

 i  is the selection intensity 

As selection intensity increases, response to selection increases. To understand how 

to optimize breeding programs it is important to understand some properties of the 

term. In particular: 

1. How to calculate selection intensity. 

2. The non-linear relationship of selection intensity with the proportion selected.  

This manual describes selection intensity in detail, with calculation methods and 

examples, in addition to the consequences of varying it within breeding programs.  
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1. Standardizing variables. 

It is difficult to compare variables measured on different scales. When the same 

property is being measured by variables using different scales, then variables can be 

easily converted to the same scale, for example, temperatures measured in 

centigrade and Fahrenheit. To compare variables for height and weight, for example, 

comparison is not so straightforward. This is usually the case in breeding 

applications.  

A common statistical solution is to standardize all variables to a mean of zero and a 

variance of one. This is usually done using the estimates of means and variances from 

the samples under study, but this need not be the case (and may produce misleading 

results with small sample sizes). 

The standardized variable is   
𝑥−𝜇

𝜎
   where x is an observation, μ is the mean of the 

distribution and σ is the standard deviation. A standardized distribution need not be 

a normal distribution, but the mean will be 0 and the variance 1 after standardizing. 
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For example, a set of ten cereal lines have the following grain weights (t/ha) and 

heights (cm): 

 

Table 1. Example dataset of ten cereal lines, and standardized units for grain weight 

and height. 

 Raw Standardized 

ID weight height weight height 

1 10.9 49.8 1.25 -0.94 

2 10.3 50.1 0.18 -0.93 

3 9.6 48.5 -1.08 -0.99 

4 9.9 50.9 -0.54 -0.9 

5 10 48.5 -0.36 -0.99 

6 11.2 99.9 1.79 0.97 

7 9.8 99.1 -0.72 0.94 

8 10.7 99.1 0.90 0.94 

9 9.6 99.7 -1.08 0.96 

10 10 99.2 -0.36 0.94 

mean 10.2 74.5 0 0 

variance 0.31 690.56 1 1 

sd 0.56 26.28 1 1 
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The standardized weight of the first variety is (10.9 – 10.2) / 0.56 or 1.25. 

Provided the estimates of the means and variances used in standardizing are 

recorded, the original variables can be recovered by multiplying by the standard 

deviation and adding the mean. For example, the original weight for the first variety 

is 1.25*0.56 + 10.2 = 10.9. 

Here, we have standardized using estimates of the mean and variance from the data. 

Sometimes, better estimates are available, especially if the sample size is small. In 

that case, the mean and variance after standardizing will no longer be 0 and 1 

respectively. 

Standardization in this manner is very common in statistics. Relevant examples for 

breeding include: 

i. PCO and PCA analyses: traits are usually standardized before analysis. This is 

equivalent to working on the correlations between traits rather than the 

covariances (important note: check what your software uses as a default). 

ii. Kinship calculation: marker scores are commonly standardized first. 
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2. Obtaining selection intensity 

The selection differential (S) is the difference between the mean of the selected group 

and the mean of the population. Selection intensity (i) is therefore the mean of the 

deviations from the population mean, measured in units of the phenotypic standard 

deviation of the population. 

 h2S / t  =  h2iσp /t 

 S    = iσp 

 i   =  S / σp 

 i   = [Σ(yi  - ŷ) / n] / σp 

 i   = the standardized mean of the selected group 

 Where: 

 yi   is the  ith selected observation 

 ȳ   is the population mean 

 n  is the number of selected observations. 

 σp
2

 is the population variance (σp is the population standard 

deviation) 

Note that the selected group is standardized by the mean and standard deviation of 

the whole population and not just by members of the select group. 
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3. Estimating selection intensity from the properties 
of the normal distribution  

Mathematically, selection intensity (i) is expressed as: 

 i = Φ(x)/p 

 Where: 

 p is the proportion selected, assuming truncation selection. 

 x  is the mean deviation of the selected group  Σ(yi  - ŷ) / n 

 Φ(x)  is the probability density function (i.e. the value on the y axis) 

of the standard normal distribution for x where:   

𝛷(x) =  
1

√2𝜋
𝑒− 

1

2
𝑥2

    

  

 

Although this seems complicated, it can be computed very simply: 

 In R: i <- dnorm(qnorm(1-p))/p 

In Excel: =NORMDIST(NORMSINV(1-p) ,0,1,0)/p 
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In R, p is the variable containing the proportion selected, whereas in Excel it refers to 

the cell containing the proportion selected. 

For example in R: 

> i <- dnorm(qnorm(1-0.1))/0.1 

> i 

[1] 1.754983 

In Excel: 

=NORMDIST(NORMSINV(1-0.1),0,1,0)/0.1 

1.754983319 

For this reason, it is no longer necessary to use selection intensity reference tables 

supplied in older textbooks (e.g. Falconer and Mackay, 1996). 
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4. Relationship between selection intensity and the 
proportion selected 

Figure 1 demonstrates the relationship between selection intensity and the 

proportion selected. The proportion selected is on a -log10(p) scale where 1 

represents the best 10%, 2 the best 1% and 6 the best 0.0001 % (1 in a million). All 

other things being equal, the breeders’ equation shows that response to selection is 

directly related to selection intensity, but that the relationship with the proportion 

selected is not linear.   

 

Figure 1.  Relationship between the selection intensity and the proportion selected. 

 

Some representative values are provided in Table 2. The ratio between intensity is 

shown for pairs of values representing a doubling of the proportion selected. As the 

percent selected reduces, the relative gain in intensity, and therefore in response to 

selection, is consistently reduced.  
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The last pair of values show a gain of only 3% from decreasing the proportion selected 

from two in a million to one in a million. A two-fold decrease in proportion selected 

requires a two-fold increase in the number of candidates for selection to maintain 

population sizes after selection, which is likely to be expensive. This suggests that 

investment might be better spent elsewhere. For example, if the cycle time were 

halved, all other things being equal, the rate of genetic gain is doubled. 

 

Table 2.  Relationship between selection intensity and percent selected 

% selected i Ratio 

20 1.4  

10 1.755 1.25 

2 2.421  

1 2.665 1.1 

0.2 3.17  

0.1 3.367 1.06 

0.0002 4.811  

0.0001 4.948 1.03 
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Using the data in Table 2, we can crudely compare a breeding program selecting 1% 

in a two year cycle (i=2.665 per cycle or 1.333 per year) with one selecting 20% in a 

two year (i = 1.4 per year and per cycle). The 20% scheme is more effective while the 

number of lines or individuals tested per year is ten times smaller (10x not 20x 

because lines must be created and tested twice as often). 

Of course, this crude comparison is a gross simplification, which is why computer 

simulation is used for more sophisticated methods of optimizing breeding programs. 

However, it does illustrate the diminishing returns from selecting ever harder. This 

most important lesson of quantitative genetics for breeders is not as well-known as 

it should be. Rather than increasing the scale of breeding indefinitely, it is more 

important to focus on doing it better: smarter not bigger.  
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5. Dependency of selection intensity on population 
size  

There is a dependency of selection intensity on population size. This arises from 

normal distribution theory in which proportions vary continuously, whereas in reality 

they vary in steps of 1/n where n is the population size before selection. An 

approximate correction for this (Bulmer 1980) is to replace the proportion selected 

in the formula for i given before with: 

 p* = (k+1/2)/ (n +k/2n) 

 Where k and n are the numbers before and after selection, 

respectively.  

Table 3 gives some examples. 
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Table 3. Relationship between selection intensity and percent selected. 

% selected k n p* i 

0.1 1 1,000 0.00150 3.253 

 10 10,000 0.00105 3.354 

 100 100,000 0.00101 3.364 

 ∞ ∞ 0.001 3.367 

1 1 100 0.01500 2.525 

 10 1,000 0.01050 2.649 

 100 10,000 0.01005 2.664 

 ∞ ∞ 0.01 2.665 

10 1 10 0.14925 1.557 

 10 100 0.10495 1.732 

 100 1000 0.10050 1.753 

 ∞ ∞ 0.1 1.755 

 

Differences are only great if the population size is very small (10) while selecting only 

a single line. 
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6. Variance in selection intensity 

If 10 breeders were each given a different random sample of 10 lines from a cross 

and each selected the best line they could find, there would be considerable variation 

in the outcomes.  

Such variability can be easily observed in Table 3: one of the breeders may have been 

able to identify the best line in 100 (i = 2.525) whereas on average, across all breeders, 

the expected (i.e. average) selection intensity is only 1.557.  There may be other 

reasons why one breeder performs better than the others, but sampling variation 

alone has a substantial effect.  

There are several methods of calculating the variance of i, but the easiest approach 

is to use simulation. Figure 2 shows results from 1,000,000 simulations of selection 

of the best line from 100.  

 

Figure 2. Distribution of i when selecting the best 1 from 100 lines: 1,000,000 simulations. 
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There is considerable variation in this extreme example. To reduce the variation in 

selection intensity, the populations size and therefore the number kept after 

selection must be increased.  

Selecting 10 lines from 1000 gives the distribution shown in Figure 3, plotted on the 

same scale. 

 

Figure 3. Distribution of i when selecting the best 10 from 1000 lines: 1,000,000 

simulations. 

 

The standard deviation of selection intensity is reduced from 0.43 to 0.14. Reliability 

of response to selection should also be considered when optimizing a breeding 

program. 
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7. Alternative selection criteria 

It is not always the case that a constant proportion of individuals is selected in each 

cycle of selection.  A common alternative is to select those lines which exceed an 

individual performance threshold.  That threshold could be predefined, for example, 

a dry matter content of 15%, or it could be determined experimentally: for example, 

any lines which exceed the performance of the best control.  

When population sizes are large enough, selecting against a predefined individual 

threshold is equivalent to selecting a population proportion threshold: for example, 

selecting the top 2.5% of a population should be equivalent to selecting any line which 

exceeds a score of 1.96 standard deviations of the population mean. This is only true 

in large samples, however. In smaller samples, the proportion of lines that exceed a 

threshold can vary substantially from sample to sample, while the mean and variance 

used to define the threshold is usually estimated from the sample itself, and 

therefore will also vary. In practice, this complication is ignored and is likely 

inconsequential, but it is worth noting. While it may not be optimal to select a fixed 

proportion every cycle, this method is simpler and the difference is likely to be slight.  

While it is common practice to select lines that exceed the performance of elite 

control varieties, this compounds the issues of the predefined selection method by 

adding the factor of error in determining control performance. In practice, the 

controls should be assessed with greater accuracy, most simply with more 

replication, with selection among candidates based on best linear unbiased 

predictions (BLUPs) of candidates compared to best linear unbiased estimations 

(BLUEs) of controls. If this is done, it is quite possible to find that no lines are selected, 

but this may be the most realistic outcome. 
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Finally, selection may not be against a threshold. Rather than all selected individuals 

contributing equal numbers of progeny to the next generation, some may contribute 

more. In optimum contribution theory, for example, the best individuals contribute a 

greater number of progeny to the next generation while a selection of lower ranking 

individuals will also make a smaller contribution, thereby sacrificing some immediate 

genetic gain to maintain genetic variation and increase gain in the long term. In this 

case the selection intensity is the mean of the standardized phenotype, with weights 

proportional to the contribution of that individual to the next generation. 

To compute this without reference to observed trait values, for example when 

designing a breeding program, ranked normal deviates are required; these are often 

required for QQ plots, also. Ranked normal deviates can be calculated from the 

properties of the normal distribution, with an adjustment for small numbers. Most 

simply, this is done by calculating the quantiles (x-values) of the normal distribution 

for a nominal proportion selected, running from 0.5/n to 0.95/n where n is the 

population size.  

For example, to calculate the ranked normal deviates from a sample of 10: 

 

n 1 2 3 4 5 6 7 8 9 10 

p 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

quantile 1.64 1.04 0.67 0.39 0.13 -0.13 -0.39 -0.67 -1.04 -1.64 

 

  



 

17  Selection Intensity 

In R, qnorm(1-c(0.5:10)/10) will return these values. They are adequate but become 

less accurate in the extremes.  Greater accuracy is provided by simulation, as in the 

following example featuring 100,000 draws of 10, or from more complex adjustments 

in the spreadsheet “calc ranked normal deviates”: 

 

n 1 2 3 4 5 6 7 8 9 10 

simulated 1.54 1 0.66 0.38 0.12 -0.12 -0.38 -0.66 -1 -1.54 

accurate 1.54 1 0.66 0.38 0.12 -0.12 -0.38 -0.66 -1 -1.54 

 

If the top three individuals were selected but the best individual contributed twice as 

many progeny as the second best, the selection intensity would be: 1.54 /2 + 1/4 + 

0.66/4 = 1.185 

The spreadsheet is annotated and should be easy to use. It relies on a method given 

in Harter (1961), which also gives the exact solution. 

 
𝑛

(𝑛−𝑝)!𝑝!
∫ 𝛼𝑛−𝑝(1 − 𝛼)𝑝𝑑𝑥

∞

−∞
 

  

 Where: 

 𝛼 =   ∫ ∅(𝑥)𝑑𝑥
𝑥

−∞
𝛼 = ∫ ∅(𝑥)𝑑𝑥

𝑥

−∞
 

 ∅(𝑥)  is the probability density function of x.  

Stick to the spreadsheet, or R! 
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8. Practical considerations 

In spite of the diminishing returns from selecting ever harder, high intensities of 

selection are always better than low. As a thought exercise, consider how low 

selection can be: as it is never worthwhile to select an individual that ranks lower than 

the median (random selection without any trait or marker would be better), the lower 

limit for selection must be 50%.  

Theory on selection limits (described in Falconer and Mackay, 1996) also indicates 

that genetic improvement in the long term - until a selection limit is reached – is 

maximized by selecting 50% per generation. The basic principle is that we wish to 

minimize the loss of favorable alleles through drift and maximize their fixation (or 

maintenance) through selection. This is dependent on population size after selection. 

Optimal contribution theory, which is described in a separate guide, attempts to 

reconcile the conflict between selection intensity and loss of favorable genetic 

variation through drift (commonly formulated as increased rates of inbreeding in 

animal breeding and most of the animal breeding literature). 

With finite resources, increasing selection intensity will almost always have a 

detrimental impact on the other factors in the breeders’ equation. In our previous 

example, for sustained or long-term selection response, selecting 10 individuals 

generally translates to selecting 1% to 10% of the population (between 100 and 1000 

lines before selection), which is acceptable. More intensive selection would require a 

very cheap phenotyping platform (or genotyping for genomic selection). It is usually 

worthwhile to increase selection speed at the cost of intensity, even with very high 

selected proportions (for example 20%, although never higher than 50%).  
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In single plant selection, it is possible to apply high selection intensity, as the cost of 

phenotyping (often by visual assessment) is cheap. This is only suitable for highly 

heritable traits. For yield, heritability is usually low, and high selection intensity does 

not compensate for this: it is usually more efficient to increase heritability through 

replication and plot trials, even though selection intensity will be reduced.  

Genomic selection implies that large populations can be raised with high selection 

intensity, and may be justified for this reason alone, as long as prediction accuracy is 

high enough. If prediction accuracy is low, it may be more efficient to select on 

phenotype with a lower selection intensity, but greater accuracy (i.e. higher 

heritability). Genomic selection may provide other benefits, however, such as by 

reducing cycle time.  

In practice, most breeding programs should be built around a long-term population 

improvement component and a short-term product development component. 

Optimal selection intensity will be different for each: in the short term, there is no 

immediate benefit to maintaining genetic variation, the goal is usually to select the 

best individual line and therefore selection intensity should be reduced. Short-term 

success is often vital to long-term funding of a breeding program, and it is an error 

to select with low intensity for short term goals. Such tradeoffs and considerations 

are best studied through computer simulation. 
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