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Introduction 

One key goal of any crop breeding program is to obtain high rates of genetic gain for traits 

of interest (i.e. identified in a product profile) while maintaining genetic diversity in order to 

sustain a high rate of adoption of improved varieties by end users. For genetic gain to result 

in higher rates of variety turnover, it is necessary for the product profile to be aligned with 

the needs of stakeholders (i.e. value-chain participants, farmers, consumers, funders, etc.).  

It is common best practice to use performance indicators to ensure that activities are aligned 

towards achieving organizational goals by increasing transparency and accountability for 

relevant results. In breeding programs, it is possible to design quantifiable indicators such as 

the rate of genetic gain delivered for traits of interest, resulting in better products.  

In the context of breeding programs that are publicly funded or where the development-

delivery pipeline involves multiple stakeholders, greater transparency can result in improved 

ability to attract and maintain funding, coordinate development pipelines and communicate 

with end-users to improve adoption rates. 

The goal of this manual is to demonstrate the use of the concept of “genetic gain” as a 

quantifiable key performance indicator (KPIs).  
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Key Performance Indicators 

A Key Performance Indicator (KPI) is a measurable value that demonstrates how effectively 

an institution is achieving key business objectives. Organizations use KPIs at multiple levels 

to evaluate their success at reaching targets. High-level KPIs measure the overall performance 

of the business, while low-level KPIs measure individual processes. This manual will focus on 

genetic gain as a high-level KPI for assessing the overall breeding process. 

In Figure A, breeding is represented as a process. The major subprocesses of breeding are 

categorized between design, engineering and scaled-production. At the same time, each of 

these subprocesses can be broken down into sub-subprocesses (i.e. the engineering 

component can be split between crossing, evaluation and selection). In this way, KPIs can be 

assigned to processes at different levels, For example, the engineering process can be 

evaluated with a high-level KPI, such as “rate of genetic gain”, or the design process can be 

evaluated by “sales”; accordingly, subprocesses can be assessed with low-level KPIs, such as 

using “heritability (h2) of trials” to measure the evaluation subprocess of the engineering 

process. Sub-sub processes can be assessed with even lower level KPIs, for example “number 

of plots planted per day” to evaluate planting, etc.  

In this way, it is possible to systematically identify and apply KPIs across the breeding 

program and to the desired level of granularity. This manual focuses on applying the concept 

of “genetic gain” as an example of a high-level KPI at the overall process, level among other 

KPIs. In the next sections, the following topics will be covered: 

1) The meaning and interpretation of genetic gain. 

2) Different methods of computation, with examples.  

3) Challenges to estimating genetic gain. 

4) Recommendations for trial design allowing for effective assessment of genetic gain. 
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Figure A. Graphic representation of breeding as a process at different levels of detail. The major processes of breeding 

shown are design, engineering and mass production, each broken into subprocesses and sub-subprocesses. The 

nature and complexity of the KPIs that should be applied varies between the different levels of processes.  
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Rate of genetic gain 

What is genetic gain?  

Genetic gain has been described as the expected or realized change in average breeding 

value of a population over at least one cycle of selection for a particular trait or index of traits 

(Rutkoski, 2019a). This change is sometimes referred to as genetic trend and can be 

estimated by regressing the average breeding value on year or cycle when linearity exists 

(Eberhart, 1964). Assuming the breeding process remains unchanged and the trait of interest 

is quantitatively inherited according to the infinitesimal model (Fisher, 1918), this estimate 

can be used to predict future genetic gain. More extensive revisions of the concept of genetic 

gain can be found in Rutkoski (2019a, 2019b), Cobb et al. (2019), or classical books like Walsh 

and Lynch (2018). Here we opt for a high-level interpretation to make the explanation 

intuitive. 

Lush (1942) capitalized on Wright’s and Fisher’s theoretical developments in quantitative 

genetics by defining the response to selection (denoted as R), which has become known as 

genetic gain (Hill, 2014). Lush’s most known contribution is the “breeders’ equation,” which 

measures the response to selection as a change in average breeding value of a population. 

In broad terms, the most popular parameterization of response to selection is shown in 

Figure B, where the phenotype (y) can either be expressed as a linear combination of an 

intercept (µ), a genotype effect (g) and an error (e) (eq. 1a), or in terms of the genotype effect 

as a deviation of the phenotype from the intercept with a slope accounting for the error term 

(eq. 1b). If we remember that the slope of a regression of the phenotype on the genotype is 

equal to the heritability (h2) (eq. 1c) it can be shown that the expectation (µ*) of a selected 

individual (g*) in the parental generation is equal to the mean of the population in the 

offspring generation (eq. 1d, 1e). The difference between the mean of the parental and 

offspring generation is called the response to selection (R) (eq. 1h). Remembering that the 
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slope b = h2 and S = µ* - µp we can see that the response to selection is the selection 

differential multiplied by the heritability (eq. 1h). Sometimes, the response to selection (R) is 

expressed in terms of the selection differential that is easily obtained by decomposing the 

heritability in terms of the genotype (σ2g = σg × σg) and phenotype (σ2p = σp × σp) variances 

(eq. 1i, 1j) (Walsh and Lynch, 2018). 

 

 

Figure B.  Derivation of the breeder’s equation in terms of selection differential times heritability 

and the standardized selection differential, accuracy and genetic variance. See main 

text for detailed explanation. g*: genetic value of selected individual, µp: mean of the 

parental generation, µ*: mean of selected population, S: selection differential, µ0: mean 

of the offspring generation. Distribution plot taken from Walsh and Lynch (2018). 
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There are many other parameterizations for specific or more complex scenarios, such as 

response for a correlated trait, response when females and males are distinctively selected, 

and other scenarios (Mrode, 2014; Walsh and Lynch, 2018; Rutkoski, 2019a). In general, the 

single trait scenario with indistinct selection among males and females and a pure-additive 

nature clarifies the concept to understand more complex situations. 

Methods to estimate the rate of genetic gain  

The development of methods to estimate genetic gain is of interest for breeding programs 

and their stakeholders, as genetic gain constitutes a highly relevant indicator of breeding 

program performance and a means to compare different crossing, evaluation and selection 

strategies, either through real experiments or simulations (Cobb, 2019; Walsh and Lynch, 

2018; Faux et al., 2016). The expected gain per unit of time (here denoted as L), usually 

referred to as the rate of genetic gain (Δg=R/L), is the most common way to express the gains 

of programs. In addition, cost is the main constraint applied to this function, being that 

increasing genetic gain at excessive costs is not optimal (Cobb et al., 2019). The methods to 

estimate the rate of genetic gain can be separated into expected (Falconer, 2005; Walsh and 

Lynch, 2018; Walsh, 2004) and realized genetic gain (Mackay 2011; Rutkoski, 2019a, Walsh, 

2004; Laidig et al., 2014; Piepho et al, 2014). In Table 1 we summarize the features of each 

method and the recommendations when using each of the different methods. 
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Table 1. Summary of methods to estimate the response to selection and rate of genetic gain.  

Method Formula used Data 

required 

Sample Factors to be considered Connectivity** 

/ TPE* 

coverage 

Recommendations 

Expected 

 

𝑅 = ℎ2𝑆 = 𝑖 𝑟 𝜎𝑔 

Lush (1942), Burrows (1972), 

Walsh (2004) 

Any trial 

information 

Any 

generation 

material 

The heritability used will have 

an important effect in under- 

or over-estimating the metric. 

Low after first 

selection cycle. 

Use across-trials heritability. 

Do not use to take complex 

decisions 

Realized 𝑦 = 𝑋𝛽 + 𝑍𝑑𝑢𝑑 + 𝑍𝑔𝑢𝑔 +  𝜀 

 

β: vector of fixed effects. 

 

ud, ug, ε: vector of 

random non-genetic, 

genetic and error effects. 

 

X,Zd,Zg: incidence 

matrices connecting 

observations with vectors 

of fixed and random 

effects 

 

Laidig et al. (2014), Piepho et 

al. (2014), Mackay (2011), 

Garrick (2010) 

Era trial 

information 

Early 

generation 

material 

1) TPE* coverage is low 

(usually some locations & a 

couple of years).  

2) Connectivity** among 

entries is maximum (cohorts 

evaluated at the same time). 

3) Sample can overestimate 

the metric. 

High / Low 1) Evaluate the material in 

representative environments 

for more than one year. 

2) Use a replicated design. 

3) Take a representative 

sample from each cohort if an 

estimate of evolution of 

genetic variance is required.  

Advanced 

material 

Released 

varieties 

On-farm 

Historical 

trial 

information 

Early 

generation 

material 

1) TPE* coverage can be low 

(early), intermediate 

(advanced) or high (varieties).  

2) Connectivity among entries 

depends on checks and the 

use of methods like EBV. 

3) Sample can overestimate 

the metric. 

Variable / Low 1) Use 4-10 checks depending 

on the stage*** to increase the 

connectivity of the data. 

2) Use early generation trials 

for better estimate of 

evolution of genetic variance 

and advanced material for 

better estimates of the rate of 

genetic gain. 

Advanced 

material 

Variable / 

Intermediate 

Released 

varieties 

Variable / High 

On farm Variable / High 

* TPE: Target population of environments. The better we cover it the more accurate estimates of the genetic and breeding value we can obtain. *** Connectivity: The degree 

of overlap of different cohorts in the same year. ** Stage: Refers to the stage of testing, from early to late. The earlier the more representative the sample is from the 

population. The rate of gain is less susceptible than the evolution of genetic variance to be biased depending on the sample. 
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Method 1. Expected (predicted) genetic gain 

The expected genetic gain method uses the parameters from breeders’ equation calculated 

for a single season to estimate the response to selection and infer the rate of genetic gain 

(Burrows, 1972). When parameters such as heritability, selection differential, selection 

intensity or genetic variance are known, these values can be simply applied in the formula 

shown in Figure B to obtain the expected response to selection or expected genetic gain 

(Falconer, 2005; Walsh and Lynch, 2018). This simplified approach has both advantages and 

disadvantages: it assumes that selection, evaluation and recombination units are the same 

breeding materials, selection is one-stage, there is no overlapping and, most importantly, it 

assumes that the response to selection will be the same in the future because genetic 

variance is assumed constant (Burrows, 1972). When these conditions are violated, more 

sophisticated formulas or methodologies are needed (Walsh, 2004). 

This method provides a prediction and as such this should only be used as an indication that 

the program is moving in the right direction, but should not be considered as an accurate 

estimate of genetic gain. We recommend paying attention and indicate clearly which 

germplasm sample has been used to calculate this metric (i.e. early or late materials) in order 

to clarify with respect to which original population the selection differential has been 

calculated. For example, when calculating this metric using the late generation evaluation 

trials, the trait-mean of the original and selected populations are different than using early 

generation evaluation trials. Another recommendation is to obtain cross-environment 

heritability using a robust method like the one suggested by Cullis et al. (2006) to calculate a 

more accurate expected response to selection. More detail and examples to calculate 

heritability can be found in the EiB Heritability Manual. 
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Example 

During the second stage of testing a program evaluates 1000 materials in 5 

environments. After analyzing the multi-environment data for one trait of interest the 

best 100 individuals are selected and the following across-environment parameters 

are obtained: 

𝜇𝑝1000 = 5 ;𝜎𝑝
2 = 2;𝜎𝑝 = 1.41 

(original population phenotypic mean, variance and standard deviation) 

𝜎𝑔 = √𝜎𝑔
2 = 1; 𝜎𝑒 = √𝜎𝑒

2 = 1 

(original population genotypic and error variance and standard deviation)     

ℎ𝐶𝑢𝑙𝑙𝑖𝑠
2 = 0.5;     √ℎ2 = 𝑟 = 0.7;    𝑖 = 1.7549 

(heritability, accuracy and selection intensity) 

𝜇𝑝100 = 7.48;    𝑆 = 7.48 − 5 = 2.48 

(selection differential between original population mean and selected 

population mean) 

The expected response to selection assuming a single stage selection, indistinctive 

selection among females and males, among other assumptions is: 

𝑅 = ℎ2𝑆 = 𝑖 𝑟 𝜎𝑔 

(response to selection under two parameterizations)  

𝑅 = (0.5)(2.48) = (1.7549)(0.7071)(1) = 1.24 

The expected (predicted) response to selection is 1.24 units, which means that the next 

generation is expected to have a population mean of 6.24 units for the trait of interest. 

If the response to selection needs to be transformed to a rate (per unit of time) it only 

needs to be divided by the cycle time of the breeding program which in this example-

case, we assume a 5-year cycle: 

∆𝑔=
𝑖 𝑟 𝜎𝑔

𝐿
=

1.24

5
= 0.248 𝑢𝑛𝑖𝑡𝑠/𝑦𝑒𝑎𝑟 
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Method 2. Realized genetic gain 

The realized genetic gain method uses phenotypic data from time-representative samples of 

germplasm from a given stage of testing (early trials, late trials, varieties on registration trials, 

varieties on farmers’ fields) evaluated either in the program across many years as the 

program evolves (historical data) or evaluated all together in an experiment (era trials). The 

data is used to fit linear models to infer the realized rate of genetic gain (Mrode, 2014; Mackay 

2011; Rutkoski, 2019a; Walsh, 2004; Laidig et al., 2014; Piepho et al, 2014) (Figure C, Table 1).  

 

 

Figure C.  Comparison of the target population of environments (TPE) coverage and connectivity 

between two different phenotypic data generation methods (historical and era) and 

variance for these parameters between different germplasm samples used for 

estimating genetic gain. In A), the difference in connectivity and TPE coverage for 

different phenotypic data generation methods (historical and era trials) is shown. Era 

trial information maximizes connectivity, while historical data depends on checks to 

have the same power. Era trial information tends to provide less TPE coverage while 

historical data provides greater TPE coverage. In B), it is shown how these two 

parameters vary depending on the germplasm sample for a given stage used for the 

calculation. 
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Simulations (available with this document through a link) show that the methods used to 

obtain realized genetic gain that use either era trial or historical phenotypic information can 

provide an accurate estimate of the true rate of genetic gain, as long as two important 

features of accurate estimates are carefully considered: connectivity among time-window 

entries, and TPE coverage (Figure D). The decisions behind the calculation of the realized rate 

of genetic gain and recommendations on how to maximize connectivity and TPE coverage 

are given next.  
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Figure D.  Comparison of estimated versus true rate of genetic gain using linear models through 

different sources of phenotypic information (era and historical trial information). 

Colored lines (left) represent the estimated (red) and true (blue) rate of gain (genotype 

means regressed on year of origin), while colored shadows (left) represent the 

standard error of the values (based on 30 parallel simulations of the same initial 

population). Scatterplots (right) represent the ∆𝑔estimates of the 30 parallel 

simulated programs. 
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The first decision that a program needs to consider when incorporating the rate of genetic 

gain as a KPI of the breeding process is to decide which trait or traits will be monitored. It is 

common to focus on the rate of genetic gain for productivity, namely yield, given that yield 

can be seen as an index of many traits of interest. The decision for which trait should be 

monitored must be driven by the final objective of the breeding program to be delivered to 

stakeholders (i.e. farmers). 

The second decision refers to which time-window of materials will be used to estimate the 

metric. It could be that the program is only interested in demonstrating genetic gains in the 

last 5, 10 or 20 years. This is a decision that must be driven by the question that management 

is trying to answer with the calculation of this metric. For example, this is particularly 

important when comparing different breeding methods going on at different periods of time. 

The third decision refers to the sample of germplasm from a given stage of testing that 

should be used for the calculation. Some examples of different stage samples include: the 

use of early testing trials (within program management), late testing trials (within program 

management), varieties on registration trials (outside program management), and varieties 

in farmers’ fields (outside program management). Any such sample could be used, but each 

kind will have different properties that affect the accuracy of the ∆𝑔 (connectivity and TPE 

coverage). It is common that early material (numerous) is only tested in a few environments 

for one year, while late stage material is tested in many environments for one or two years, 

material for registration (few) is tested in a wide range of environments for a few years and 

the material grown by farmers are tested in all the TPE for many years. This means that a ∆𝑔 

estimate based on late material will be more representative of TPE, whereas earlier material 

will be more representative of  the breeding population. It is recommended that trials from 

all stages should be considered separately for the estimation of genetic gain KPIs based on 

several samples to obtain a better indication of the true ∆𝑔. 

The fourth decision refers to the locations and years representing the TPE, where the 

sample of germplasm was tested. This introduces two of the most critical factors in ∆𝑔 

estimation: TPE-focus estimation and connectivity among time-window entries. The ∆𝑔  needs 
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to be linked to a specific target represented by the TPE and not for all targets at the same 

time. It is also common that breeding programs do not have overlapping entries for any given 

stage of testing (i.e. preliminary yield trial) among different years because of the natural way 

that breeding programs work by cohorts. The problem with low connectivity is that the 

estimates of genetic or breeding value from the entries get confounded with the year effect. 

At the same time, breeding programs will generally have at least a small degree of 

connectivity insofar as check varieties do not change at the same rate as testing material 

from the program.  

For the above reason, it is recommended that a good strategy to maintain connectivity 

among checks across years is put in place (Figure 5). In this check replacement strategy, 

checks may change over years, but not all at the same time so as to avoid the loss of 

connectivity. For example, in early testing with a large number of entries, it is possible to 

maintain eight checks as fixed varieties across years and change only two when new checks 

are needed in order to maintain the connectivity. A general rule for how many checks can be 

kept and changed can be based on simulations (Rutkosky, 2019b). It is recommended that, 

as a minimum, the number of checks maintained should be equal to the number of years 

taken to recycle parents, so that a program with an n-year breeding cycle requires a minimum 

of n checks to maintain sufficient the connectivity, while 2n and 3n checks is preferable (i.e. 

in the early testing trials). Is also important to decide how often the check replacement should 

occur. It is recommended that check replacement should happen after the same number of 

years that it takes to complete a cycle of recurrent selection at a rate of ¼x where x is the 

number of checks being grown (n, 2n, 3n). For example, a 4-year cycle program should 

replace ¼ of the checks after 4 years to maintain good connectivity (Figure E). In addition, it  

is always recommended to keep 1 to 2 checks that will never be replaced in order to keep a 

steady link among all trials from the program. 

 



 

15  Genetic gain as a high-level key performance indicator   

 

Figure E.  Connectivity and check replacement strategy, where n represents the number of 

years that it takes to complete a breeding cycle. The earlier testing occurs, the more 

checks (between 2 and 3n checks) can be used to estimate genetic gain; later in the 

testing phase few checks can be used (i.e. n checks as a minimum). The check 

replacement strategy can be applied after n years at a rate of ¼ x, where x is the 

number of checks being grown at a given stage (n, 2n, 3n). 

 

All told, the issue of connectivity can be addressed in three different ways:  

1) Following the recommendations outlined above to ensure connectivity through checks. 

2) Using the EBV method (Garrick, 2010) to connect the data of a program that didn’t follow 

recommendations. 

3) Running an era trial to maximize connectivity. 
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While it assumed here that the genetic gain KPI is calculated in the ideal way, using historical 

data from the program, many breeding programs will have not previously adopted the 

recommendations outlined above to achieve the proper levels of connectivity and TPE 

coverage required to obtain accurate estimates. In this case, the recommendations above 

should be immediately adopted, while in the meantime, connectivity can be addressed via 

options 2 and 3 as outlined above. In option 2, the EBV method can connect time-window 

data through an additive relationship matrix (pedigree or marker-based), although it should 

be considered that shrinkage of the estimates dependent on the heritability (h2) can lead to 

underestimation of the ∆𝑔. In option 3, the program can also opt to run an explicit trial with 

different time-window material – an “era trial” – to remove the year confounding effect and 

maximize connectivity; the only disadvantage of taking this approach is the additional cost in 

time and money that the programs have to incur to obtain a baseline. 

 

Example  

Assume that a breeding program has followed the recommendations to 

achieve proper levels of connectivity and TPE coverage for the last 12 

years. The program has a breeding cycle of 4 years, with approximately 4 

cohorts that have been recycled between 2 to 3 times. The program has 

been storing information for the different stage materials and obtains trial 

information for the preliminary yield trials in the following format: 

 

genotype 
female 
parent 

male 
parent 

generation location phenotype yearEval yearOrigin 

G232411 G181850 G182485 10 e20 10.79194 2005 2001 

G232404 G181850 G182485 10 e20 11.77105 2005 2001 

G231572 G172422 G182483 10 e20 9.980104 2005 2002 

G232396 G181850 G181765 10 e20 7.884396 2005 2001 

… … … … … … … … 
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This data is then used to estimate the realized rate of genetic gain by taking 

across-location and across-year genotype means. These estimates can be 

accurately estimated despite the difference in years and locations because 

common checks exist across all these environments (year by location 

combination). The GxE interaction is also reduced by sampling the TPE as 

frequently as possible. The cross-environment genotype estimates are as 

follows: 

 

id predicted.value std.error status yearOrigin 

222243 12.37015 0.380793 Estimable 14 

222254 12.02203 0.380793 Estimable 14 

222479 11.52694 0.380793 Estimable 14 

222567 12.55944 0.380793 Estimable 14 

231413 11.28243 0.380792 Estimable 15 

… … … … … 

 

These final estimates can be merged with the year of origin of the material and 

perform a simple linear regression of the across-environment estimates as a 

function of the year of origin. Since the regression coefficient represents the 

rate of genetic gain in the original unit of the trait, using the estimates of genetic 

value (y) and year of origin (x) variables, the covariance of both variables and 

the variance of the x variable is calculated: 

𝑐𝑜𝑣(𝑥, 𝑦) = 4.033 

𝑣𝑎𝑟(𝑥) = 33.585 

𝛽 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝑣𝑎𝑟(𝑥)
=  

4.033

33.585
= 𝟎. 𝟏𝟐 𝒖𝒏𝒊𝒕𝒔/𝒚𝒆𝒂𝒓 = ∆𝒈 
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Detailed examples based on simulated data and scripts are available with this manual in 

order to recreate the different scenarios of phenotypic data sources [historical information 

(both by maintaining connectivity using recommendations outlined here or by using the EBV 

method when connectivity is poor) and era trials]. A detailed explanation of the simulated 

examples available is provided in Annex 1. 

Adoption strategy 

To design effective KPIs, it is important to clarify the level of the process the KPI applies to, 

the method to calculate it and the baseline value. This manual has demonstrated the use of 

genetic gain as a KPI to evaluate the overall performance of the breeding process, how the 

KPI is derived and different methods to calculate it. In order to define which method should 

be used and derive the baseline value, it is important to consider the KPI adoption strategy.  

Breeding programs should calculate genetic gain using phenotypic information obtained on 

a yearly basis. Therefore, the logical adoption strategy is to follow the recommendations 

outlined in this manual to maximize connectivity and TPE coverage of the yearly trials. All 

stages of testing should maintain the recommended number of checks and apply a check 

replacement strategy that maintains connectivity (Figure F). At the same time, to establish a 

baseline value for the KPI even if connectivity is poor, a decision can be made to use available 

historical data and apply the EBV method to connect data (using relationships between 

germplasm) or, if the available data cannot be used for this purpose, run an era trial to 

maximize connectivity and obtain an initial value of the ∆𝑔 while the recommendations are 

adopted (Figure F).  

 



 

19  Genetic gain as a high-level key performance indicator   

 

Figure F.  Proposed adoption strategy of the genetic gain KPI metric in a breeding program. A 

phased approach is proposed as to increase the accuracy of the metric by adopting 

recommendations little by little in a time-bound window. 

Conclusion 

This manual introduced the concept of key performance indicators as a means to evaluate 

breeding program processes at different levels. The use of genetic gain as an indicator of the 

overall performance was proposed, and the derivation and calculation of this metric was 

demonstrated. Approaches for predicted and realized genetic gain were presented alongside 

recommendations for breeding programs to apply when adopting genetic gain as a KPI based 

on phenotypic data. Connectivity among years and locations and TPE coverage were 

presented as the main drivers of the accuracy of this metric. To overcome obstacles to 

adoption that may arise, different recommendations related to experimental design were 

proposed. A phased approach to increase the accuracy of this KPI per dollar invested was 

presented. Simulated data and sample scripts are available to allow breeding programs to 

recreate analysis and adopt this important metric. 
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Annex 1 

Realized genetic gain methods 

Although the expected (predicted) response to selection can be useful, it relies on many 

assumptions, and as such can only be considered valid for a single generation of response 

from an unselected base population (Walsh, 2004). The most accurate way to estimate the 

rate of genetic gain or response to selection is to use phenotypic data, whether from specific 

experiments to measure genetic gain or from the data generated by the program (this will 

influence the type of analysis as well). The two-step approach to estimate the rate of genetic 

gains involves modeling the phenotypic data for a trait or index of genetic merit as a function 

of time (years; better performance due to non-genetic improvement causes), covariates 

related to experimental design factors (nuisance parameters), the genotypes, and the 

interaction of genotypes with other factors such as years and locations, followed by a second 

model where the adjusted means are fitted as a function of the year of origin of the material 

(sometimes years of release in the case of varieties) (Mrode, 2014; Mackay 2011; Rutkoski, 

2019). The regression coefficient for the time covariate in this second model provides the rate 

of genetic gain per year avoiding the second model (Piepho et al, 2014)  
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Figure A1  Graphical representation of the computation of the rate of genetic gain using linear 

models under different experimental situations. The diagram emphasizes the use of 

era trials and historical data to calculate the rate of genetic gain using a one-step or a 

two-step modeling approach. 

 

  



 

iii  Genetic gain as a high-level key performance indicator   

Some of these methods have been compared by Rutkoski (2019b) with the goal of clarifying 

which methods are the best fit for different breeding program scenarios. Using simulations, 

Rutkoski compared different types of populations and methods to compare the true and 

estimated genetic gain, finding that era trials provide a good estimation of genetic gains; 

other options considered such as the use of control populations are unrealistic scenarios in 

practice. An important lesson from the simulations executed is that checks play an important 

role in raising the accuracy of this estimated parameter by connecting data properly.  

The use of historical information to estimate genetic gain 

These methods have been proposed for use in the scenario that the breeding program has 

historical information to estimate genetic gain. Historical germplasm samples could include 

any of the following: 

• On-farm trial information 

• Variety trial information 

• Advanced yield trial information 

• Preliminary yield trial information 

The use of different sources of information changes the level of coverage of the TPE to 

properly estimate genetic values for the entries and connectivity between years (Figure A2).  
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Figure A2.  Graphical representation of the use of historical information to estimate 

genetic gain using different data sources of germplasm samples. The lack of 

overlapping of the yearly data is typical when using historical datasets (vertical 

red rectangles changing as #checks increases). On the other hand, the number 

of entries and their TPE coverage (horizontal red rectangles) varies depending 

on the stage used (germplasm sample), being the on-farm and variety trials 

the ones with bigger TPE coverage. 
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Here we will present an example using variety trial information, in which the material is tested 

across a large number of locations and years (despite having different checks across years). 

In this scenario, TPE is assumed to be effectively sampled, thereby decreasing the importance 

of genotype by year and genotype by location interaction. This makes the adjusted means 

for genotypes across years and locations accurate and the estimates of genetic gain reliable. 

The idea behind this model is to fit the main genotype and year effects as fixed, and 

interactions as random (Mackay et al., 2011; Laidig et al., 2014; Piepho et al., 2014). The model 

used takes the following form: 

𝑦 = 𝑋𝛽 + 𝑍𝑑𝑢𝑑 + 𝑍𝑔𝑢𝑔 +  𝜀 

Where the vector β corresponds to the fixed effects of the factor variables for “year” and 

“genotype”, and X is the incidence matrix connecting observations with the vector of fixed 

effects. The vector ud refers to the vector of random effects for non-genetic effects such as 

“year by location”, the vector ug refers to the vector of random effects for “genotype by 

location” and “genotype by year” and the matrices Zd and Zg connect observations with the 

vectors of random effects ud and ug. A graphical representation of the estimation of genetic 

gain using variety trial information is shown in Figure A2. 

As an example, the 5-year cycle breeding program from Figure A3 was simulated for 20 

years, assuming that the program has 4 checks per year that change every 3 years. Step 1 

was to gather the phenotypic data that would be used for the calculation of genetic gain. In 

this simulation, elite materials to be released as varieties (top 5 materials released every year) 

were picked. The information for the locations, years, genotypes and year of origin for the 

material (year when the material was created) required is as follows: 

 

genotype 
female 
parent 

male 
parent 

generation location phenotype year yearOrigin 

G232411 G181850 G182485 10 e20 10.79194 2005 2001 

G232404 G181850 G182485 10 e20 11.77105 2005 2001 

G231572 G172422 G182483 10 e20 9.980104 2005 2002 

G232396 G181850 G181765 10 e20 7.884396 2005 2001 

… … … … … … … … 
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Figure A3.  Schematic representation of a breeding program with a 5-year cycle comprising 

idealized 5 cohorts of crossing. For each cohort, year 1 is used to make the crosses 

and grow the F1 generation, year 2 is used to grow the F2 and F3’s through an SSD 

process, year 3 the F4 and F5 generations are grown through SSD, year 4 the first stage 

of testing occurs and the best 10% individuals are grown, year 5 the second stage of 

testing occurs and the best 10% is selected to become parents of the next generation 

and be tested in a third stage of testing in year 6 to derive products. Every year the 

process is repeated and as soon as the pipeline starts to produce new parents these 

become the new breeding population. 
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Step 2 was to fit the linear mixed model mentioned above using available software (i.e. 

ASReml-R, SAS, breedR, sommer). For example, in ASReml-R nomenclature the mixed model 

fitted is as follows: 

> myModel <- asreml(fixed= phenotypeN ~ yearF + genotypeF, 

                  random= ~ locationF + yearF:locationF +   

      yearF:genotypeF + locationF:genotypeF, 

                  residual=~units, 

                  data=myData) 

The fixed effects for years remove the improvement due to non-genetic reasons, and the 

genotype effect refers to the improvement due to genetics. The random effects for location, 

interaction year by location, interaction year by genotype and location by genotype provide 

the rest of the adjustment, but are considered small given the sampling of the TPE. After this 

we predicted the genotype means across environments and years: 

> predictions <- predict(myModel, classify = "genotypeF") 

After merging the adjusted means with the year of origin of the material, we fitted a second 

model to calculate the rate of genetic gain: 

> myModel2 <- lm(AdjustedMeans~yearOrigin, data=predictions) 

> summary(myModel2)$coefficients 

              Estimate  Std. Error   t value      Pr(>|t|) 

(Intercept) 11.6257072 0.098068350 118.54698 1.223554e-107 

yearOrigin   0.1377858 0.008186588  16.83068  1.142425e-30  

As it can be seen the regression coefficient (slope=0.137…) for year of origin provides the 

increase in the original units of the trait per year, which is fair to call rate of genetic gain 

(~0.13 units per year; the simulated true rate of genetic gain was 0.12). An R script with a 

dataset to recreate these results is available in the EiB Toolbox entry for this manual. Here, 
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for simplicity variables for the experimental design like rows, columns, blocks, etc. were 

ignored, but they should be considered when fitting the first model. 

 

  

Figure A4.  Workflow to analyze historical trial information method using a stage-bound 

germplasm sample. The lack of overlapping of the yearly data (vertical red rectangles) 

from the released varieties (same color represents contemporaneous entries) is 

tackled by using the right number of checks across years or by an effective sampling 

of the TPE (horizontal red rectangles) making the adjusted means for genotypes 

across years and locations accurate. Then, a statistical model is fitted to remove all 

the nuisance of improvement due to non-genetic causes (i.e. years). Finally, adjusted 

means are merged with and regressed as a function of the year of origin of the 

genotypes. The regression coefficient from this second model (βslope) is the rate of 

genetic gain per year. 
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Challenges and issues: The first issue with the opportunistic approach is that it relies on elite 

varieties for release being tested in many environments in order to sample the TPE 

effectively, decreasing the importance of genotype by year and genotype by location 

interaction, making the adjusted means for genotypes across years and locations accurate 

and the estimates of genetic gain reliable. If the variety trials do not sample the TPE properly 

then this method loses effectiveness. The second consideration is that varieties are usually 

not the best representation of the population mean across cycles but rather of the tails 

(transgressive events) of certain traits which could lead to some inconsistency of the genetic 

gain metric. FInally, the use of checks to connect the data is essential and has an important 

effect in the estimates, independently of the source of historical information.  

Using estimated breeding value (EBV) as an alternative to increase connectivity in 

historical data 

This modeling method is an extension of using historical information to estimate genetic 

gain. The purpose is to tackle low connectivity across years and low sampling of the TPE by 

connecting the data through the relationships that exist in the breeding material (Garrick, 

2010), mainly through the incorporation of the genetic relationship matrix, whether based 

on pedigree or based on genetic marker data (to calculate a genomic relationship matrix). 

The idea behind this model is to fit the main genotype, genotype by year and genotype by 

location effects as random (requirement to use a relationship matrix). The model used takes 

the following form: 

𝑦 = 𝑋𝛽 + 𝑍𝑑𝑢𝑑 + 𝑍𝑔𝑢𝑔 +  𝜀 

Where the vector β corresponds to the fixed effects of the factor covariate “year” and the 

factor and X is the incidence matrix connecting observation with the vector of fixed effects. 

The vector ud refers to the vector of random effects for non-genetic effects such as “location”, 

“year by location”, the vector ug refers to the vector of random effects for “genotype”, 

“genotype by location” and “genotype by year” and the matrices Zd and Zg connect 
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observations with the vectors of random effects ud and ug. A graphical representation of the 

EBV method is shown in Figure A5. 

The main difference with the previous example is the computation of an additive relationship 

matrix using the information on genotype, female, male names and selfing generation (see 

Mrode, 2015) for more details on how to calculate it. Many functions and software are already 

available, and the R script provided shows how to do it. The data required to calculate the 

relationship matrix based on pedigree could appear as follows, where the columns refer to 

the identifiers of genotypes, their parents and selfing generation: 

genotype female parent male parent generation 

G232411 G181850 G182485 10 

G232404 G181850 G182485 10 

G231572 G172422 G182483 10 

G232396 G181850 G181765 10 

… … … … 

 

This information is used to create an expected identity by descent matrix among genotypes, 

known as a relationship matrix (Walsh and Lynch, 2018).  

Alternately, if marker data was available, the marker matrix could be placed in a numeric 

format and subjected to a method to compute the additive genomic relationship matrix, such 

as Van Raden (2007) or a combination of pedigree and genomic information (i.e. see Legarra 

et al., 2009). A relationship matrix for genotypes was obtained in this step (Figure A5). 

The other feature of the estimated breeding value method is the use of software to add 

relationship matrices for random effects (i.e. ASReml-R, SAS, breedR, sommer) to fit the linear 

mixed model mentioned above.  
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For example, in ASReml-R nomenclature the mixed model fitted is as follows: 

> myModel <- asreml(fixed= phenotypeN ~ yearN + yearF, 

                  random= ~ locationF + yearF:locationF +  

                               vm(genotypeF, source=A) +  

         diag(yearF):vm(genotypeF, source=A), 

                  residual=~units, 

                  data=myData) 

The important component here is the fit of genotype and interaction of genotypes with years 

and locations as random to connect the data through the pedigree (in ASReml-R i.e. this is 

done using the vm function to add relationship matrices). Genotype means across 

environments and years are predicted as before, and the adjusted means are merged with 

the material year of origin. We then fit a second model to calculate the rate of genetic gain. 

An R script with a dataset to recreate these results is available in the EiB Toolbox entry for 

this manual. Here, for simplicity, the variables for the experimental design such as rows, 

columns, blocks, etc. were ignored, but this should be considered when fitting the first model.   
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Figure A5. Workflow to analyze historical information where checks have not been sufficiently 

maintained to provide genetic gain estimates, requiring the application of the “EBV” 

method to increase connectivity. The lack of overlapping year data (vertical red 

rectangles) from the yield trials entries and checks (same color represents 

contemporaneous entries) is tackled by the use of a relationship matrix for genotypes 

to leverage from the population structure created by breeding programs. Then, a 

statistical model is fitted to remove all the nuisance of improvement due to non-

genetic causes (i.e. years). Finally, adjusted means are merged and regressed as a 

function of the year of origin of the genotypes. The regression coefficient from this 

second model (β1) is the rate of genetic gain per year.  
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Challenges and issues: The first challenge with the opportunistic approach and model are is 

the availability of pedigree information to fit models, as pedigree information is not 

consistently tracked by all breeding programs. In practice, the pedigree information 

requirement only necessitates that programs record parental information in two additional 

columns alongside the selfing generation. The second challenge is the issue of shrinkage 

when genotype effects are considered random. Fitting genotypes and interactions as random 

are requirements to use the pedigree information (to connect the data), but the amount of 

shrinkage will be dictated by the heritability of the trials. If the h2 is so low that it will create a 

large shrinkage that will result in underestimates of the rate of genetic gain. This is confirmed 

in simulations that show that shrinkage could lead to the rate of genetic gain being 

underestimated by a factor of 5 to 6.  

 

Conducting “era trials” as an alternative to increase connectivity in historical data 

This method to estimate the rate of genetic gain aims to remove all the nuisance as a result 

of from under-sampling the TPE, year effects, and low connectivity of entries across years. 

The idea is very simple and consists in sampling material from all years of the breeding 

program from a given stage or germplasm sample (i.e. preliminary yield trial) and running a 

specific trial with all entries together in the same locations and years to estimate this metric.  

The model is exactly the same as the one used for the “historical trial” method: 

𝑦 = 𝑋𝛽 + 𝑍𝑑𝑢𝑑 + 𝑍𝑔𝑢𝑔 +  𝜀 

Where the vector β corresponds to the fixed effects of the factor variables for “year” and 

“genotype”, and X is the incidence matrix connecting observations with the vector of fixed 

effects. The vector ud refers to the vector of random effects for non-genetic effects such as 

“year by location”, the vector ug refers to the vector of random effects for “genotype by 

location” and “genotype by year” and the matrices Zd and Zg connect observations with the 

vectors of random effects ud and ug.  
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A graphical representation of the estimation of genetic gain using era trial information is 

shown in Figure A6.  

 

Figure A6.  Workflow to analyze era trial information. The design of a trial with a sample of 

historical material allows for a full overlap of entries and minimize the connectivity 

issue and maximizing the accuracy of the estimate of the rate of genetic gain. On the 

other hand, the TPE is under-sampled leading to inaccuracy of the population mean 

which is of little relevance in these studies. A statistical model is fitted to remove all 

the nuisance of improvement due to non-genetic causes (i.e. years, locations, etc.). 

Finally, adjusted means are merged with and regressed as a function of the year of 

origin of the genotypes. The regression coefficient from this second model (β1) is the 

rate of genetic gain per year. 
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Considerations for hybrid crops 

Hybrid crops where the final product is not improved population (pool) but rather the hybrid 

between pools present a special case. In order to adjust to this scenario, instead of looking 

at the per se performance of the within-pool material, the program should monitor the 

increase in performance of the actual hybrids, or otherwise the testers used. Though it has 

been suggested to consider the general combining ability (GCA), this is not as important as 

considering the hybrids. 
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