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SUMMARY

Molecular selection indices such as the molecular eigen selection index method (MESIM) and other molecular marker
score selection indices maximize the selection response by combining information on molecular markers linked to quantitative
trait loci and phenotypic values of the traits. The standard restrictive selection index and the restrictive eigen selection index
method (RESIM) maximize the selection response of only some traits while leaving others unchanged. This research extends
the MESIM, RESIM, genomewide molecular selection index, and standard restrictive selection index to the case of a multitrait
multienvironment genomewide molecular marker selection index. We used simulated data and real data for estimating the
performance of various genomewide and molecular marker selection indices. Results showed that, in general, when several
traits were selected in various environments simultaneously and all the markers were included in the indices, the multitrait
multienvironment genomewide molecular marker selection index increased the genotypic means over the mean of individuals
selected by other selection indices. The sampling properties of MESIM and RESIM in the context of multitrait multienvironment
genomewide molecular marker selection indices and their selection responses are known, and their estimators showed desirable
statistical properties such as consistency and asymptotic unbiasedness. We propose a general procedure for finding the asymptotic
statistical sampling properties of the multitrait multienvironment genomewide molecular marker selection index and of other
selection indices by applying the theory underlying MESIM and RESIM.

Keywords : Selection index, Restrictive selection indices, Eigenanalysis, Multitrait multienvironment genomewide molecular
marker indices.

INTRODUCTION QTL). In LT, the rate of genetic improvement is
maximized by combining phenotypic information with
the marker score. Gimelfarb and Lande (1994, 1995),
and Zhang and Smith (1992, 1993) demonstrated that

in large inbred populations, LT is very effective for

In the context of marker-assisted selection, Lande
and Thompson (1990) developed the theory of the
molecular marker score selection index (LT), which is
an application of the selection index methodology

proposed by Smith (1936) but with the modification
that the effects of the QTL linked to the markers
(MQTL, fitted value of the least square regression) are
incorporated into the index by means of a marker score
(i.e., MQTL x code values of the markers linked to
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traits with low heritability.

The efficiency of LT depends on the density of
molecular markers (MM), the number of MM linked
to QTL, the size of the population, and the heritability
of the trait. Furthermore, since LT is derived from the
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selection index methodology proposed by Smith (1936),
it has the same advantages and disadvantages as Smith’s
selection index: it is simple to use but its sampling
statistical properties and selection response are
unknown, except in the case of two traits (Hayes and
Hill 1980). Even for two traits, the statistical properties
of Smith’s selection index and its selection responses
are difficult to use and evaluate (Harris 1964);
furthermore, it is not easy to consistently assign
economic weights to the traits.

A different approach to the selection index is taken
by Ceron-Rojas et al. (2006), who developed the basic
theory of a selection index based on a dimension
reduction method, the singular value decomposition
(eigenanalysis) of the phenotypic variance-covariance
(or correlation) matrix of the traits of interest (called
ESIM, for eigen selection index method). The authors
showed that ESIM does not require economic weights
or estimates of genotypic variances-covariances. In
ESIM the elements of the first eigenvector determine
the proportion each trait contributes to the selection
index, and the first eigenvalue is used in the selection
response. Following the idea of the restrictive selection
index of Kempthorne and Nordskog (1959), Cerdn-
Rojas et al. (2008a) developed a restrictive ESIM
(RESIM) that facilitates maximizing the genetic
progress of some characters while leaving others
unchanged.

Recently, Ceron-Rojas et al. (2008b) developed a
molecular marker score selection index (called MESIM,
for molecular eigen selection index method), which,
like the LT, maximizes the rate of genetic gains by
combining the traits’ phenotypic value with molecular
scores. Like the ESIM, MESIM does not require
economic weights but does require estimates of the
genotypic variance-covariance structure of trait X trait,
molecular score X molecular score, and trait X
molecular score. In MESIM, the elements of the first
eigenvector determine the proportion that each trait
contributes to the selection index, and the first
eigenvalue is used in the selection response. Simulation
results of Cerdn-Rojas et al. (2008b) showed that the
genotypic means and the expected selection response
from MESIM for each trait are equal to or greater than
those from the LT. When several traits are
simultaneously selected, MESIM performs well for
traits with low heritability. An advantage of the MESIM
over the LT is that the asymptotic statistical sampling
properties of the estimators are well known.

In a typical plant breeding context where several
traits are measured in a number of environments,
MESIM can implicitly incorporate the phenomenon of
genotype X environment interaction by including, as
phenotypic variables, the combination of traits and
environments (i.e., phenotypic variable = trait-
environment combination) and the genetic correlations
between environments, between traits, between traits
and environments and all the associations between
molecular marker scores, molecular scores and traits,
and molecular scores and trait-environment
combinations. Both LT and MESIM require identifying
the linkage between the molecular marker and the QTL,
the MQTL effects, and the combination of the
molecular scores effects and phenotypic information
that allows genotypes to be classified and selected using
the selection index.

Linkage disequilibrium between MM and QTLs
can be used to improve the prediction of individual
performance and/or to map QTLs. There is evidence
that not all QTLs that control traits may be effectively
detected (Li 1998); therefore, a possible solution to
improve the ability to detect chromosome regions that
significantly contribute to the traits’ phenotypic
variability is provided by a genomewide molecular
marker selection index that does not require first
identifying a subset of markers with significant effects
(Lange and Whittaker 2001; Bernardo and Yu 2007).
In genomewide selection, traits and MM can be
considered variables of the selection index that are used
to predict the overall genetic merits of the individuals
subject to selection. In this situation it is not necessary
to estimate the MQTL effects, and as Lange and
Whittaker (2001) pointed out, a genomewide marker
selection index using all available markers is superior
to the Lt. Bernardo and Yu (2007) found that, in maize,
genomewide marker selection yielded genetic gains 18-
43% above those achieved using LT.

In the context of molecular marker genomewide
selection, a huge number of collinear MM are used as
variables in the hope that they (or at least some of them)
will, to some degree, be able to explain the observed
phenotypic variability, thus increasing their ability to
predict genotypic response. However, various statistical
problems hindered an appropriate assessment of their
importance in explaining the phenotypic response.
Gianola et al. (2003, 2006) and Gianola and van Kaam
(2008) pointed out statistical and genetic difficulties



José Crossa et al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 125-142

| 127

encountered in the process of building a model for
genotypic prediction using the ordinary least square
estimation method. Among these drawbacks are:
(1) difficulty in handling non-additivity (i.e.,
dominance, epistatic effects) in a standard parametric
model even with two loci; (2) problems of false
positives when multiple testing; (3) rigid assumptions,
i.e., linear relationships between response and
explanatory variables; (4) collinearity of the MM and,
therefore, no precise estimates of their effects; and
(5) a number of MM far exceeding the number of
observations. Gianola and van Kaam (2008) developed
a theoretical background for integrating some non-
parametric and semiparametric models that allow
accounting for non-additivity effects (without explicitly
modeling them) with Fisher’s traditional infinitesimal
additive genetic model.

One of the main problems in building models
when using large numbers of linked markers is
parameter identification. In the context of association
mapping methodology, Crossa et al. (2007) pointed out
aliasing problems due to ambiguities in the statistical
model that are often encountered when including large
numbers of markers, or when the researcher attempts
to model the effect of genotype X environment
interaction together with the genetic covariance among
relatives and population structure. The problems of
parameter identification created by large, collinear
numbers of MM can be, at least partially, mitigated by
the dimension reduction methodology of singular value
decomposition (i.e., eigenanalysis). Since MESIM and
RESIM are based on subjecting the high order
dimension variance-covariance matrix (or correlation)
comprising variable X variable, molecular score x
molecular score, and variable x molecular score to
singular value decomposition, thus extracting the main
part of the signal in the early components, it seems that
MESIM and RESIM might be an efficient mathematical
approach to address the complexity of predicting
genetic values via incorporating: (1) extensive
genomewide MM information, and (2) large phenotypic
data sets comprising multitraits measured in
multienvironments.

In this paper, we extend the theory underlying the
MESIM of Cerén-Rojas et al. (2008b) and the Lange
and Whittaker (2001) selection index to the case of
multitrait multienvironment genomewide molecular
marker selection index. Furthermore, we show that this

theory is also valid in the context of the restrictive
selection index of Kempthorne and Nordskog (1959),
and for the RESIM of Cerén-Rojas et al. (2008a).

The application of MESIM and the Lange and
Whittaker (2001) selection index to the case of
multitrait multienvironment molecular marker
genomewide will be named MESIMg;y (GW for
genome wide) and LW (for Lange and Whittaker),
respectively, whereas the application of the restrictive
selection index of Kempthorne and Nordskog (1959)
and the RESIM of Ceron-Rojas et al. (2008a) to the
case of multitrait multienvironment molecular marker
genomewide will be named KNy, and RESIM;y,
respectively. In all cases, the phenotypic data include
multitrait multienvironment, and the genotypic data
include all available molecular markers, not just those
linked to QTLs, for example, when applying MESIM
and LT. For MESIMy., LW, KNGy, and RESIMy,, the
code values of the homozygous genotypes, markers, and
QTLs are denoted by —1, and 1; furthermore, no scores
are given to the markers, since in most molecular
marker genomewide instances, the chromosomal
locations of the markers and QTLs are unknown. We
use (1) simulated data of doubled haploids for
estimating the performance of MESIMy,, LW, KNgy,
RESIMgyw, MESIM, and LT when phenotypic data and
MM are used, and (2) real data from a QTL mapping
study in an F; maize population. We propose a general
procedure for finding the asymptotic statistical
sampling properties of LW, KNgy, and LT by applying
the theory underlying MESIMgy, RESIMgy, and
MESIM.

THEORY OF SELECTION INDICES

Although the theories underlying various selection
indices are given in several publications (Lande and
Thompson 1990, Falconer and Mackay 1997, Lange
and Whittaker 2001, Bernardo 2002), here we will
briefly describe and summarize the selection indices to
facilitate an understanding of how they were extended
to the case of multitrait multienvironment genomewide
marker selection indices.

Smith’s selection index : Smith’s selection index is
based on the linear combinations
Y=B'pand Z=0'g (1)

where p is the vector of trait phenotypic values, g is
the vector of trait genotypic values, B is the vector of
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the coefficients of p, Z is the breeding value, and © is
the vector of trait economic weights. The trait
phenotypic values, p,(t =1, 2,..., N,, N, = number of
traits under selection, i = 1, 2,..., n, n = number of
genotypes or sample size) are modeled as p;, = g, + &,
where g, is the i genotypic value of the /" trait
phenotypic value and ¢, is the environmental
component. Assuming that g, and &, are independent,
and that g, represents only additive effects, Z = 0'g
denotes the breeding value (Hazel 1943; Kempthorne
and Nordskog 1959). Hence, selection based on Y= 'p
leads to a selection response

o'Gp
\JO'Go./p'PB
where G and P are the variance-covariance matrices of
genotypic and phenotypic values, respectively, & is the
standardized selection differential, 0'Gf is the
covariance between Y and Z, B’PP is the variance of ¥,

02 =0'GH is the variance of Z, and py, is the
correlation between Y and Z.

R= ko, py, =ko, (2)

The restrictive selection index of the Kempthorne
and Nordskog method (KN RSI): Kempthorne and
Nordskog (1959) maximize p;%z and incorporate
restrictions into the genotypic variance-covariance
matrix. Suppose there are ¢ traits and only g — r are to
be improved while leaving » of them unchanged. Then,
the index Y = 8’p should maximize p%z while leaving
r traits unchanged. Suppose a ¢ X » matrix F of Os and
Is such that B’GF = 0 [where the s are used for traits
that remain unchanged, or fixed]. Let C = GF;
according to Bulmer (1980), maximizing p%z is the
same that maximizing 6’Gp under the restrictions B'PP
=1 and B’C = 0. Then it is necessary to maximize ¥ =
0GB — 0.57(B'PB — 1) — u'C’B, where 0.57and u” =
[u,...u,] are Lagrange multipliers. When partial
derivatives of ¥ with respect to B are set equal to the
null vector, then
GO—-PB—-Cu=0

Thus, the vector of KN RSI coefficients that
maximizes 6'GP (and thus py, and R) is By = AR (the
subscript KN in By, stands for Kempthorne and
Nordskog), where A = [I - P'C(C’P'C)'C’], Pl is
the inverse matrix of P, and B¢ = P'GO. Thus, in the
context of the KN RSI, the Y, that maximizes py, is
Yiy= B xyP, and the maximized selection response is

Ry = k B;(NPBKN .

The restrictive eigen selection index method
(RESIM): Similar to KN RSI, RESIM (Cerén-Rojas
et al. 2008a) maximizes pz,, but besides the usual
restrictions of KN RSI (i.e., BPB =1 and B’'C = 0), it
incorporates the restriction 8GO = 1. Then, pz, must
be maximized under three restrictions: B'PB =1, 6'G6
=1, and B’C = 0. Therefore, it is necessary to maximize

0 = (0'GB)* —u’C’B — u(B'PB — 1) — @(’GO — 1)

with respect to B, 0, w’ = [u,...u,], &, and @, where B is
the vector of RESIM coefficients, © is the vector of
economic weights, and u’ = [u,...u], 4, and @ are
Lagrange multipliers. The solution is

(Qr-@)B=0
where Q; = [I — P'C(C’P™'C)'C’IP'G. Thus, the
values that maximize pg, under the three restrictions
B'PR=1,0'GO =1, and B’'C = 0 is the first eigenvalue
(), and the vector that allows constructing Y= ’p in
RESIM is the first eigenvector (B = Bgzsny) of the
matrix Qg, i.e., Y = Brgsus P-

Lande and Thompson molecular selection index
(LT): Lande and Thompson (1990) extended Eq. 1 to
include the case where information on QTLs associated
with molecular markers is available. They denoted the
molecular score selection index as

V.- Bp+Bs=If, ﬁ;]m G)

where B, is a vector of trait phenotypic weights, f3; is
the vector of the molecular score weights, p is the

vector of trait phenotypic values, and s = [ ... sy 1,

where each s,(/ =1, 2, ..., N;; N,= number of molecular
scores) is the /" molecular score given by the sum of
the products of the estimated MQTL effects multiplied
by the coded values of their corresponding molecular
markers. The selection response to the LT is

6. W
R=ko,py; =ko,——== B”f
o \/egswegs \/BpSTBpS

4

P S G S
where T = and W = : k has been
S S S S

defined as in Eq. 2; 07 = 0,, W8, is the variance of
the breeding value (Z; =0,g+6(s); 0, =[0, 6] is
a vector of economic weights (in the LT selection index,
0, is a vector of zeros); f,, TP, is the variance of ¥;
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B;)s = [B;, B.] is a vector containing trait phenotypic
(B,) and molecular (3,) weight scores; G and P are the
variance-covariance matrices defined in Eq. 2; and
S = Var(s) is the variance-covariance matrix of the
molecular marker scores when two or more traits are
considered. Only statistically significant additive
MQTL effects are included in s.

The vector B, = T_IWGgS allows constructing the
molecular score LT selection index Y, = f,p,,

p),s =[p’s’], which has maximum correlation with

s

R, = k,/B;, TB,, . Estimators of B, and B, ( ﬁp and P, )

for various traits are obtained directly from the
estimators of G, P, and S (G, P, and S ), and from the
vector O,

Z; = 8,g+8;s; the maximized selection response is

The molecular eigen selection index method
(MESIM): Using a concept similar to that of
Kempthorne and Nordskog (1959), Ceron-Rojas et al.
(2008b) showed that Eq. 4 is maximized by maximizing

p% zZ - In MESIM, it is necessary to maximize

® = (Gigv Wﬁps )2 - /’l(ﬁ;ﬂTﬁpv -D- w(e‘lgswegs -D

with respect to Bps, Ggs, M, and @, where Bps is the vector
of MESIM coefficients, 6,, is the vector of economic
weights, 1 and @ are Lagrange multipliers, and B, /TP,
=1 and O, W6, = 1 are restrictions impose when
maximizing p;%s z.- The result is

(K - IUI)Bps =0 (5)

where K = T'W. Thus, for MESIM, the value that

maximizes pé_ z, is the first eigenvalue (1) of matrix K,
and the vector that allows constructing Y, (with
maximum correlation to Z; = 0,g+86(s) is the first
eigenvector of matrix K (B, = B/zs;),); the maximized
selection response can be written as Rypgpv = k\/z .
When MQTL effects are not incorporated into the
selection index, Eq. 5 can be written as (P~'G — uI)B
= 0 and then K = P!G (G and P were defined in
Eq. 2).

In MESIM the estimates of 4 and B,,; = Bz, are
obtained by singular value decomposition, which means
K can be written as

K = LAH’ (6)

where the columns of matrix L(LL’ = I) are the
left singular vector of K, and the columns of matrix
H(HH’ = I) are the right singular vector of K; A is a
diagonal matrix with the square root of the eigenvalues
(singular values) of KK’ or K’K. Then the estimators
of 4= tyrsppsand B = Bypspsare obtained from KK’,

such that (KK’ = Zysm DByesiy = 0 Bgpsiy and
[_3> sy are the maximum likelihood estimators of the
eigenvector and eigenvalue of KK’, respectively, and
are asymptotically consistent and unbiased. The
estimators of K, L, H, and A are K, I:, ﬁ, and A ,
respectively, so K =LAH' .

INCORPORATING MULTITRAIT
MULTIENVIRONMENT AND GENOMEWIDE
MOLECULAR MARKER INFORMATION
INTO SELECTION INDICES

Suppose one wishes to have a selection index that
will facilitate selecting genotypes in environments
while, at the same time, incorporating additional
random variables represented by several MM. Such is
the multitrait multienvironment genomewide molecular
marker selection index (Y;,), which, according to Eq.
3 can be written as

o= o+ B 00| <m0

where By, =[Br B,,]1 and p,, = [pym’]; By is a
vector of weights for the phenotypic traits of the
corresponding genotypic traits evaluated in various
environments; B, is the vector of molecular marker
weights; p is the vector of the phenotypic values of
the genotypes evaluated in various environments; and
m is the molecular marker vector, where the
homozygous genotyped molecular marker takes values
of 1 and —1, and the heterozygous genotyped molecular
marker takes a value of 0 for cases of segregating
populations such as F, populations, or values of 1 and
—1 for doubled haploids denoting the presence or
absence of the molecular marker; a similar designation
is given to the genotyped QTLs (see Appendix). Then
the response to this selection index (Y),) can be written
as

Oy ZBy

o7, 1= , ®)
0420, By T By

RM= kGZM pYMZM :k
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P G G G
where[=| £ Miz=|"F M1 k has been
Gy M Gy M

defined as in Eq. 2; O%M =0,,X0,, is the variance of
the genomewide breeding value (Z,, =0g; +0,,m);
0y, =[0; ;] is the genomewide vector of economic
weights (in the LW selection index, 6,, is a vector of
zeros); By, B, is the variance of the selection index
Y,; and By, =[Br B,,] is the genomewide vector
containing phenotypic values in the various
environments (B;) and molecular (B,,) weights. I" and
Z are variance-covariance matrices comprising the
phenotypic variance-covariance matrix of the genotypes
evaluated in various environments (P;); the genotypic
variance-covariance matrix of the genotypes evaluated
in various environments (Gy); the variance-covariance
matrix of the molecular markers (M), and the
covariance matrix of the genotypic values with the
molecular markers (G ;).

The structure of matrices P, Gz, M, and G, are
as follows

P, By Py,
P, - Py Py Py and
Pyi Pyy Py,
G, Gp Gy,
G, - Gy Gy o Gyy ,
_GNel Gy,2 Gy,

where P,, and G,, are the ™ phenotypic and genotypic
variance-covariance matrices, respectively (e=1,2, ...,
N,, N, = number of environments). The Appendix
shows that, in the case of a doubled haploid population,
matrix M can be written as

1 (1-25,) (1-2riy )
| a-2n) 1 (=27 )
A=2ry ) (=2ny ) .. 1

where (1-25,,) denotes the covariance between any
two MM, for example between MM 1 and MM m™ for
m=1,2,..., N, (where N, = number of MM).

The structure of G,, depends on the way the
genotypic values of the traits have been defined. Let
g.,, be the genotypic value of the #” trait of the "
genotype evaluated in the e’ environment; assuming
that the genotypes evaluated in different environments
correspond to different random variables (i.e., including
combinations of traits and environments as phenotypic
variables; in other words, phenotypic variable = trait-
environment combination) (Falconer and Mackay
1997), then according to Lange and Whittaker (2001),
g.;; can be written as

NQTLeI
8eit = z xeiqaetq (9)
g=1
e=1,2, .., N, where x,;, denotes the code value of

the ¢” QTL in the i genotype (i=1,2, ..., n, n =
number of genotypes or sample size) in the e”
environment (in a double haploid population the values
of x,,, are 1 or —1); a,,, is the additive effect of the q"
QTL on the " trait t=12,.., N, N,= number of
traits under selection) in the e” environment; and Notier
is the number of QTLs that affect the #” trait in the ¢”
environment. The inconsistency of the values of ¢, in
different environments indicates QTL X environment
interaction, which leads to the detection of QTL effects
in some environments but not in others (Beavis and
Keim 1996; Crossa et al. 1999; Bernardo 2002).

Phenotypic values, according to Eq. 9, are modeled
as

peit = geit + Ee + GEie + geit (10)

where the first term of Eq. 10 is the same as in Eq. 9,
E, is the effects of the environments, GE,, is the
genotype X environment interaction effect, and &, is
the experimental error. For a double haploid population,
assuming that the genotypes evaluated in different
environments correspond to different random variables,

the Appendix shows that G, can be written as

A-2K)oy, (A-2x5)0,

(1=2mp)0rp

O 2,1Nm )alNQTLl

=210, (A=2ny Joy,,,

Gy=

: (1 - erer )aNxNQTLx

=2y Doy (1=21y5)0ty 5

where (1-2r,,)c, is the covariance between the code
values of the m™ MM and the genotypic value of the
™" trait that is influenced by the genotypic additive

effect of the ¢" QTL (t=1,2,.... N;m=1,2,...,N,;
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q=1,2, ..., Nop,, where Ny, = number of QTLs that
affect the genotype of trait 1, N7, = number of QTLs
that affect the genotype of trait 2, etc.). These results
make it possible to develop LW, KNy, MESIMy, and
RESIMy-

Multitrait multienvironment genomewide molecular
marker indices of Lange-Whittaker (LW): In the
multitrait multienvironment genomewide molecular
marker selection index of Lange and Whittaker (2001),
the vector B,, = I''20,, allows constructing the
genomewide molecular selection index ¥, ;= BrwPuy
which  has with
Zy = 0pgp+0,m; the maximized genomewide
selection response can be written as R, =

k\/B’LWFBLW . The estimators of B, (ﬁLW) for

various traits in various environments are obtained

directly from the estimators of P,, G, M, G,, (f’E,

maximum correlation

G E- M , and GM ), and from the vector 6,,.

The restrictive multitrait multienvironment
genomewide molecular marker selection index of
Kempthorne-Nordskog (KNw): The development of
the KNgyy is direct. In this case, KNy RSI is defined

as BKNGW = AGWBLW’ Where AGW’ = [I - F_

'Com (CowT ' Chyy ) Chyy 1, T is the inverse matrix
of Cij = ZF, and B, = I"'20,,. Thus, in the context
of the KNy RSL the Yy that maximizes POy, z is

4 . . .
Yen,,, =Pkn,, P- and the maximized selection response

is Rgy,, = k\/ﬁ}(NGWrBKNGW :

The multitrait multienvironment genomewide
molecular marker eigen selection index method
(MESIM(w): In MESIMgy, B,, and Y,, can be
obtained using the estimation procedure described by
Ceron-Rojas et al. (2008b) by means of the singular
value decomposition theory. In MESIMgy, it is
necessary to maximize

4 2 ’ ’
IT = (03, ZBy ) —A(By TBy —1)— (8,6, —1)
with respect to B, 0, 4, and @, where B, is the vector

of MESIMgyy, coefficients, 6, is the vector of economic
weights, 4 and @ are Lagrange multipliers, and

By By =1and 6},X0,, =1 are restrictions imposed

when maximizing p%M z,, - In MESIMgy, it is assumed
that ©,, is not a vector of constants.
When IT is derived with respect to B,,and 6,,, the
result is
(Q-ADBy =0 an
where Q = T'™'Z. Thus, for MESIMg . the value that

maximizes p,%M z,, is the first eigenvalue (1) of matrix
Q, and the vector that allows constructing Y, (with
maximum correlation with Z,, = 6pg; +0,,m) is the
first eigenvector of matrix Q(f,,); the maximized
selection response can be written as R,,= k+/A . When
information on the QTLs linked to the molecular
markers is not incorporated into the selection index, but
selection is conducted on various traits and
environments simultaneously, then Eq. 11 can be

written as (P'Gz —ADB=0 and Q = P;'G; when
selection is conducted in one environment, (P~'G — AI)
B =0 and then Q = P~'G (where G and P are defined

as in Eq. 2), from where the relationship among ESIM,
MESIM, and MESIMyy is clear.

Using singular value decomposition, Q can be
written as

Q=UDV’

where the columns of matrix U(U’U = I) are the left
singular vector of Q, and the columns of matrix V(V'V
= 1) are the right singular vector of Q; D is a diagonal
matrix with singular values of QQ” or Q’Q. The

estimators of 4 = ﬂ’MESIMGW and BM = BMESIMGW are
obtained from QQ’, such that

A A7 A2 o
(QQ" - Ayesim,, DByesima,,, = 05

A2 ~ . . .
ﬂMESIMGW and BMESIMGW are the maximum likelihood

estimators of the eigenvector and eigenvalue of QQ’,
respectively, and are asymptotically consistent and
unbiased. The estimators of Q, U, V, and D are

Q, ﬁ, \7, and ﬁ, respectively, so Q = UDV’. These

results allow estimating Y, as I?M = ﬁ}lleSIMGW Py .



132 José Crossa et al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 125-142

The restrictive multitrait multienvironment
genomewide molecular marker eigen selection index
method (RESIMgy,) : As in the case of KNgy,
developing RESIMgy, is straightforward. The first

eigenvalue (ﬂRES,MGW) that maximizes p%M z, under
the three restrictions, B;,I'B,, =1, 0,,£0,, =1, and
By Cow =0, and the vector (Presiy,,) that allows
constructing Y, =By,p, which has maximum

correlation with Z,, = 0pgg +60,m, provide the
solution to the equation

(Q rew—*rEsmm,, DBrESIM,, =0

where
Qo= =T Cy (Cop T ' Cay ) ' oy IT'E,
and C; = ZF.

SAMPLING PROPERTIES OF THE LANGE-
WHITTAKER MULTITRAIT
MULTIENVIRONMENT GENOMEWIDE
MOLECULAR MARKER ESTIMATOR (§,)
IN THE CONTEXT OF THE MESIM¢y

Sampling properties of the estimator ﬁLW are
important because they make it possible to determine

how near or how far ﬁLW is from the population

parameter, ;. In addition, this facilitates obtaining
information on the selection index, Y; ;. Assuming that
the variance-covariance matrix estimators of I" and Z

(I and L) are independent, then the expectation of

Bw = T7'£0,, [ E(B,y)]is relatively easy to obtain,
since 0, is a vector of constants. However, the variance

of ﬁLW = [Var(ﬁLW)], even in the unlikely case that
T" and 2 are independent, is not simple to compute. It
is evident that T and ¥ are not independent, and this
may be the main reason why Harris (1964) and Hayes
and Hill (1980) were not successful in determining the
statistical sampling properties of the Smith (1936)
selection index. Based on the sampling properties of

ﬁMESIMGW, we propose a method for finding the

sampling properties of ﬁLW. The following procedure
is also valid in the context of the restrictive multitrait
multienvironment genomewide molecular marker
selection index, KNgy and RESIMgy, as well as the

MESIM and LT selection indices applied to the case
of multitrait multienvironment molecular markers,
ESIM, and the Smith selection index.

For simplicity, assume that B, B,, ..., By +n_are
the eigenvectors of QQ’ from MESIMy; then, due to
the Bessel inequality (Rao 2002),

, 2 2
By, Bow| <[Bowl (12)

2
ﬁgﬁLW| ot

BBLw |2 +

in which B,y |=+BLwBrw denotes the Euclidean

’ 2
BiBrw| (d=1.2,...N,+N,,

N, + N,, = number of traits under selection (V,) plus
number of MM (%,,)) denotes the square of the absolute
value of the scalar product of the d" eigenvector of
QQ’ and B, ;- Equality in Eq. (12) will occur when B,
is in the subspace generated by the eigenvectors B, B,,

oo By 1y, of QQ’ (Rao 2002). Suppose that B, is in
the subspace generated by the eigenvectors B, B, ...,

norm of B, and

Bn +n : then, since the eigenvectors of QQ’ form a base
(Rao 2002), they are linearly independent and [, can
be written as a linear combination of the eigenvectors
of QQ’, that is

BLWz alBl + a2[32+ ..t aNt+NmBNt+Nm =Ua (13)

where the coefficients a, (d=1,2, ..., N,+ N,) denote
scalars, U(U’U = 1) is a matrix with the eigenvectors
of QQ’, and a is a vector of a;’s. Eq. (13) is given in
Ceron-Rojas et al. (2008a).

from where Eq. (13) can be written as

o= BrLwBOB + BLw BBy +-..
+(B£W BN,+Nm )BN,+NW (14)

The importance of Eq. (13) is that it represents a
unique linear combination. To see this, suppose that
another linear combination, such as Ua = Ub, exists;
then U(a — b) = 0; because the eigenvectors of U are
linearly independent and different from 0, (a — b) = 0,
from where a =b. Hence, the linear combination of Eq.
(13) is unique. It is possible to show that the estimator
of the vector a (a) is a least square estimator. Let

6= By — Ua)’ (B — Ua)
= BwBow +a’'UVa-2a"UB,
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Because U’U = I, when deriving d with respect to
a, we get

i5 =2Ia - 2U'B,y
oa
When this is equal to the null vector, 4 =0, . and

2

d
because —0=2I,
oa

then a=UP,, effectively

minimizes the distance between B, ;, and Ua. Therefore,
a is an unbiased estimator with minimum variance
(characteristics of the least square estimators).

The previous results indicate that the estimator of

B (ﬁLW) can be written as a linear combination of
the eigenvector estimators of QQ’, i.e.,

where d, isthe d” (d=1,2, ..., N,+ N,, N,+ N, =
number of traits under selection (&,) plus number of
MM (¥,,) element of a.

Note that a is an unbiased estimator with

minimum variance and that each a; is a scalar whereas

each B, is a vector. Suppose that 4, and B, are

independent, d =1, 2, ..., N, + N, since the sampling

properties of By, By, ..., By .y are known (Mardia
et al. 1982; Anderson 2003), then the sampling

properties of ﬁLW are also known. In MESIMgy,

asymptotically E(B,) = B, and for d # 1, Var(f,)

U

1N+N /1/1 4 Covb. B
" Ua—yY —————PBB;. an ov(ByBs) =

[id[i} whered, f=1,2,...,N,+N,, and

- n(ld - ﬂyf )2

n is the number of genotypes or sample size.

SIMULATED AND REAL DATA

Simulated data: We used the genetic and breeding
simulation tool of QuLine (previously called QuCim)
(Wang et al. 2003, 2004) to simulate genotypes from a
population with the aim of assessing the theoretical and
practical results from the MESIMy,, LW, KNgy, and

RESIMgy selection indices applied to the case of
multitrait multienvironment genomewide molecular
markers, and MESIM and LT selection indices applied
to the case of multitrait multienvironment molecular
markers. To simulate the genotypic and phenotypic
values of individuals in a breeding population, a genetic
model (which is called gene and environment (GE)
system in QuLine) needs to be defined first. The
information required for defining a GE system includes
number of genes (or QTLs), gene effect for each trait
(including additive, dominance, and epistasis), linkage
among the genes in one chromosome, trait heritability,
etc.

On the other hand, a breeding strategy to generate
various breeding populations needs to be defined as
well. By defining breeding strategy, QuLine translates
the complicated breeding process into one the computer
can understand and simulate. QuLine allows several
breeding strategies to be defined simultaneously; they
are contained in one input file. The program then makes
the same virtual crosses for all the defined strategies
in the first breeding cycle. A breeding strategy in
QulLine is defined as all the crossing, seed propagation,
and selection activities in an entire breeding cycle. A
breeding cycle begins with crossing and ends at the
generation when the selected advanced lines are
returned to the crossing block as new parents. Selection
methods that can be simulated in QuLine include mass
selection, pedigree system, bulk population system,
backeross breeding, top-cross breeding, doubled haploid
breeding, marker-assisted selection for one trait, and
many combinations and modifications of these. The
simulator provides the true genotypic value for each
genotype in the population, as well as the phenotypic
value of the traits under study.

Using a sample of 240 genotypes and 125
molecular markers from a real F; maize population data
set, selection was made based on five traits in three
environments (15 variables); the 15 variables were
considered simultaneously.

Generating the simulated doubled haploid
population for selection: We followed the procedures
described by Zhang and Smith (1992), in which the
additive effects of the QTLs required for defining a GE
system in QuLine were obtained from a Normal
distribution of gene effects (both positive and negative)
that contribute to total additive genetic variance. The
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simulated traits were female flowering time (FFL)
(days) and grain yield (GY) (grams per plot) measured
in three different environments for a maize population
of 10 chromosomes. A total of 460 MM were
distributed every 5 cM over the 10 chromosomes. Also,
49 QTLs for FFL were randomly distributed, with a
total of 13 QTLs for each environment and 120 QTLs
for GY with 40 QTLs in each environment. The data
were used to generate 500 doubled haploid genotypes
that form the reference population (cycle 0). The two
traits were considered simultaneously in the three
environments, together with the 460 MM. Using 10%
(k=1.755) selection pressure, 50 genotypes were
selected under MESIM;y, LW, KNy, and RESIMy
multitrait multienvironment genomewide MM selection
index, and marker-assisted selection indices MESIM
and LT were applied to the case of multitrait
multienvironment MM. The 50 selected doubled
haploids were then crossed in diallel fashion, and a new
population of 500 doubled haploids was generated. This
was repeated during five selection cycles for the two
traits in the three environments using all 460 MM.

The efficiency of the indices was compared using
the true mean genotypic value and the regression of the
mean genotypic value of the selected genotypes on the
selection cycles. We used phenotypic, genotypic, and
molecular marker variance-covariance matrices for
estimating the singular vectors and the singular values
for MESIMgw, RESIMgy, and MESIM, as well as the
weights of the coefficients of LW, KNgy, and LT. The
true genotypic values of each individual are given
directly and do not need to be estimated from the data.
The RESIMgy, and KN were applied for fixing FFL
and selecting just for GY using all the available
markers.

Sign of the coefficients and economic weights of the
selection indices: When using MESIMy,, and
MESIM, it is often necessary to change the sign of the
coefficients of the first singular eigenvector in order to
select the genotypes according to the desired genetic
advance, that is, for trait FFL the sign is always
negative (decreasing the mean genotypic value),
whereas for GY, the sign is always positive (increasing
the mean genotypic value). However, when MESIM,
and RESIMy are used, the number of QTLs affecting
the trait and the molecular markers linked to the QTLs
are unknown, so the sign (direction) of the molecular
markers on the MESIM;, cannot be modified as in the

case of MESIM, where it is possible to modify the
direction of the coefficients of molecular scores.

As for the economic weights of the LW, LT, and
KNgyw selection indices, they were assigned following
Smith et al. (1981). One set of economic weights had
coefficients of 1 or —1, and the other had the heritability
of each trait multiplied by 1 or —1, depending on the
trait. Therefore, for FFL and GY, the first set of
economic weights was —1 and 1, respectively, in the
three environments. The other set of economic weights
is the heritability of each trait in each environment
multiplied by —1 (for FFL) and by 1 (for GY); thus the
heritabilities of the two traits in the first environment

were hrp; =0.385 and Ky, = 0.260; in the second
environment, the heritabilities were iz, = 0.579 and

Keys = 0.506, and in the third environment the

heritabilities were hg 3 = 0.653 and Ky = 0.200;
all economic weights of the molecular markers were
equal to zero. The LW, KNy, and LT selection indices
are denoted as LWI1, KN1g;y, and LT1 when the
economic weights are —1 and 1, and as LW2, KN25y,,
and LT2 when heritabilities are used as economic
weights.

The two traits in the three environments, as well
as all the molecular markers, were simultaneously
considered for the selection indices MESIMgy, LW,
KNgw> RESIMgy, MESIM, and LT.

Real data: A real maize population with 240 F,
genotypes and 125 molecular markers were used. This
data set gave rise to the simulated data set described
above. Selection was based on five traits evaluated in
three environments. The 240 families were planted in
the field using an incomplete block design with two
replications. The signs of the scores in MESIMgy,
RESIMgyw, MESIM, and of the economic weights for
LW, KNgw- and LT were similar to those used for the
simulated data, that is, in the LW selection index, one
set had economic weights —1, —1,—1,—1, and 1 for male
flowering time (MFL) (days), female flowering time
(FFL) (days), ear height (EHT) (grams per plot),
respectively, in the three environments, whereas the
second set of economic weights comprised the

heritability of the trait in each environment, as Az, =

0.39, h2p = 0.38, Ky = 031, Bpyr =019, By, =
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0.26, hypo= 0.44, Bipy= 0.58, hayr, = 0.43,
Bppra =029, hiyy =0.51, hiyp3=0.75, hpp 3= 0.65,

Biyrs= 0.48, hpyri= 039, and hpy= 0.18. All
economic weights of the molecular markers were equal
to zero. All five traits were simultaneously selected in
three environments under MESIMgyw, LW, KNgw.
RESIMgyw, MESIM, and LT selection indices. In this
case, the RESIMy, and KNgy, were applied, the traits
MFL and FFL were fixed in three different
environments, and traits EHT, PHT, and GY were
selected using all the available markers.

RESULTS AND DISCUSSION

Simulated data: Shown in Table 1 are the genotypic
means of the lines selected using MESIMgy,, LW,
LW2, KNI 5w, KN25w, RESIMgy, MESIM, LTI, and
LT2 selection indices, when selection was practiced on
two traits and three environments simultaneously during
five selection cycles. In general, the average gains per
selection cycle of the genomewide selection indices
MESIMgyw, KN1gw, KN25w, RESIMgy, LW, and
LW2 were higher than the average gains per selection
cycle of MESIM, LT1, and LT2 for trait GY in the three
environments. These results agree with those obtained
by Lange and Whittaker (2001), where genomewide
was superior to marker-assisted selection. However, for
trait FFL the average gains per selection cycle of
MESIM and LT were better than the average gains per
selection cycle of MESIM ., KNgw. RESIMgy, and
LW in environments 2 and 3. Apparently, selection
based on genomewide MM of traits with low

heritability such as GY (/#y; = 0.260; Iy, = 0.506,
and Kys; = 0.200) is more effective than in traits with
higher heritability such as FFL (hz;; = 0.385, hig =
0.579, and h}p 5 = 0.653).

Results of specific comparisons among various
selection indices indicate that MESIM,y, was superior
to MESIM four out of six times, LW1 gave higher
genetic gains than LT1 four out of six times, and five
out of six times LW2 was more effective than LT2 in
selecting the best lines. Within genomewide selections
indices, results based on the average genetic gain per
selection cycle indicated that MESIM ; had a slight
advantage over LW1 and LW2 for GY. Average gains
per selection cycle in environment 1 for GY were
higher for MESIMy, (51.8 grams per plot) than those

obtained using LW1 (49.6 grams per plot) and LW2
(46.7 grams per plot) (Table 1), but RESIMgy, had the
highest average genetic gains per selection cycle, 53.2
grams per plot for GY in environment 1. However, for
FFL (-6.0) in environment 1, the opposite was true for
LWI1 (-6.6 days) but not for LW2 (-4.5 days). In
environment 2, average gains in GY per selection cycle
for MESIM,y, were superior to those obtained using
LWI and LW2 (MESIMgy, = 46.7 grams per plot versus
LWI1 =42.2 grams per plot and LW2 = 39.9 grams per
plot). In environment 3, average gains in GY from LW1
were the highest (23.4 grams per plot), as compared
with MESIMgy, (20.7 grams per plot) and LW2 (17.4
grams per plot) (Table 1). For FFL, LW1 and LW2 are
more effective than MESIM,y, for selecting early lines
(i.e., low FFL). When FFL was fixed and GY was
selected using all the available markers, KN4y and
KN2 ;w were more effective in environments 2 and 3
than RESIMy,; however, RESIM, was the best in
environment 1.

Figs. 1 and 2 show the genotypic means for GY3
(GY in environment 3) and FFL2 (FFL in environment
2) for five selection cycles when genotypes were
selected using MESIM gy, LWI, LW2, KN1 5w, KN2Gw.
RESIMgw, MESIM, LT1, and LT2 selection indices.
The effectiveness of the three genomewide selection
indices (MESIMgy, LW, and KNy ) for increasing GY
is clearly shown in Fig. 1. At the end of cycle 5, LW1
was the index that accumulated the highest selection
gains, followed by KN 14y, MESIMy, and RESIMy
(similar to MESIM). For FFL2 (Fig. 2) at the end of
cycle 5, MESIM was the best selection index in terms
of decreasing the maturity of the lines, followed by the
marker-assisted selection indices LT1 and LT2, and
LW2 and MESINGy. The genomewide selection index
LW2 was the best in cycle 4, but it did not show good
gains after the last selection cycle. Note that, as
expected, selection gains of the restrictive selection
indices KN1 5y, KN25yw, and RMESIMgy, fluctuated
around the original mean (cycle 0), since these selection
indices do not change the trait FFL. Results from the
simulation data did show the effectiveness of
MESIMgyw, LW, KNgyw, and RESIMy; for improving
the traits under selection in a multitrait
multienvironment genomewide framework. For most of
the trait-environment combinations, LW and MESIMy,
were similar but better than MESIM and LT selection
indices in terms of average genetic gains.
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Fig. 1. Mean of the genotypic values of grain yield (GY) (grams
per plot) in environment 3 of genotypes selected using
MESIMgy., Lange-Whittaker (LW1 and LW2), RESIM gy,
and Kempthorne-Nordskog (KN1gy and KN2gyw),
multitrait multienvironment genomewide molecular marker
selection index, and MESIM and Lande-Thompson
(LT1 and LT2) multitrait multienvironment molecular
marker selection index when two traits are selected in three
environments simultaneously during five selection cycles
using simulated data. The simultaneously selected traits
were female flowering (FFL) and grain yield (GY). The
economic weights used for female flowering (FFL) and
grain yield (GY) under the Lange-Whittaker (LW1 and
LW2) and Kempthorne-Nordskog (KN1 5y and KN2gy),
multitrait multienvironment genomewide molecular marker
selection index, and MESIM and Lande-Thompson (LT1
and LT2) multitrait multienvironment molecular marker
selection index were —1 and 1, respectively, and the
heritability of the corresponding traits.

Real data: Table 2 shows the mean phenotypic values
for one selection cycle of the 24 selected genotypes
(10%) obtained using a real maize population with 240
F; genotypes and 125 molecular markers for
MESIMgw, LW (LW1 and LW2), MESIM, and LT (LT1
and LT2) when all five traits are selected in three
different environments, and when RESIM;y; and KNgyw
(KN1 5w and KN2 ;) were applied for fixing MFL and
FFL in three different environments and for selecting
for EHT, PHT, and GY using all the available markers.
Note that MESIM;y; was more efficient than LW for
selecting shorter and earlier maize genotypes with
higher grain production for all traits in all environments,
except for PHT in environment 1 (PHT1) and for GY
in environment 2 (GY2). These results indicate that
when 15 traits were selected for simultaneously using
all 125 available molecular markers, MESIMy;, was
better than LW in 13 of the 15 traits.
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Fig. 2. Mean of the genotypic values of female flowering (FFL)
(days) in environment 2 of genotypes selected using
MESIMgy., Lange-Whittaker (LW1 and LW2), RESIM gy,
and Kempthorne-Nordskog (KN1gy and KN2gyw),
multitrait multienvironment genomewide molecular marker
selection index, and MESIM and Lande-Thompson (LT1
and LT2) multitrait multienvironment molecular marker
selection index when two traits are selected in three
environments simultaneously during five selection cycles
using simulated data. The restrictive trait was female
flowering (FFL). The economic weights used for female
flowering (FFL) and grain yield (GY) under the Lange-
Whittaker (LW1 and LW2), and Kempthorne-Nordskog
(KN1gy and KN2gy,), multitrait multienvironment
genomewide molecular marker selection index, and
MESIM and Lande-Thompson (LT1 and LT2) multitrait
multienvironment molecular marker selection index were
—1 and 1, respectively, and the heritability of the
corresponding traits.

Results from the real data indicate that, at least for
GY, MESIMgy, would be more efficient than LW when
trait heritability is low (Table 2). For example,
heritabilities of GY in environments 1, 2, and 3 were
Bey, = 0.26, h%y, = 0.51, and RBiy; = 0.18,
respectively, and MESIM;, had a phenotypic mean of
selected individuals higher than LW in environment 1
and environment 3, (Table 2). According to these
results, the efficiency of the multitrait multienvironment

genomewide molecular marker selection indices
MESIMgy and LW depends on trait heritability.

Finally, it is worth noting that although MESIMy,
may occasionally not be the selection index with the
highest selection gains, it has the statistical properties
of the principal components, which are easy to evaluate.
In contrast, the statistical properties of the LW selection
index are more difficult to assess. MESIMy, has some
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Table 2. Mean phenotypic values of genotypes selected using MESIM;y;, Lange-Whittaker (LW 1 and LW2), RESIMy, and
Kempthorne-Nordskog (KN1;y and KN24y,), MESIM and Lande-Thompson (LT1 and LT2) for male flowering
(MFL), female flowering (FFL), plant height (PHT), ear height (EHT), and grain yield (GY) in three environments
from a real data set of a F; maize population using phenotypic, genotypic, and molecular marker variance-covariance
matrices for one selection cycle. Heritability of each trait is shown in parentheses.

Genotypic means
Environment 1 Environment 2 Environment 3

Selection [MFLI1| FFL1 [EHT1|PHTI1| GY1 |MFL2|FFL2 |EHT2|PHT2| GY2 |MFL3| FFL3 [EHT3| PHT3| GY3
Indices (0.39) (0.38)[(0.31)[ (0.19)] (0.26)| (0.44) | (0.58)| (0.43)| (0.29)[ (0.51)[ (0.75) [ (0.65) [ (0.48)| (0.39)|(0.18)
MESIM; /| 98.8| 98.5| 75.0 | 141.8 [166.7 | 98.1 | 98.1 [ 72.1 |131.6 [109.3 [102.1 [103.4 [ 71.0 | 116.1|144.0
LWI1 100.8 |100.7 | 78.1 [141.5[164.9 | 98.8 | 98.9 | 76.5 [134.4 [100.8 |102.9 |104.7 | 73.0 | 113.8 | 81.8
LW2 100.5 |100.4 | 78.5 [141.7 [131.3 | 98.5 | 98.3 | 76.1 [133.6 [111.4|103.1 |105.0 [ 71.5|111.4| 70.5
MESIM 99.1 | 98.8 | 73.6|138.71130.2 | 97.8 | 96.2 | 72.0 |134.0 |120.4 |102.2 [102.7 | 69.3 [107.3|112.0
LT1 99.5( 99.5 | 76.9|1142.1 |1203.8 | 98.1 | 97.9| 759 |136.9 |159.7 |101.7 [102.5 | 71.3 [114.0| 98.6
LT2 99.2 [ 99.1 | 77.81144.0 1230.5| 98.0 | 97.6 | 76.7 |136.0 |162.2 |102.5 [104.0 | 72.0 [112.2| 74.8
RESIM;y, |101.1 [100.6 | 77.0 | 137.0 | 86.1 | 99.3 [101.1 [ 75.6 |132.7 | 59.8 [102.2 [104.8 | 73.2 | 118.7|135.7
KNl  [101.5[101.5 | 79.7 | 140.7 {124.9 (100.7 | 98.8 [ 80.1 |135.4 | 73.5 (103.4 [104.8 [ 72.7 | 112.5| 70.6
KN2;y  |101.7 [101.9 | 80.5|143.2 (130.2 (100.5 | 98.7 [ 80.3 |136.2 | 85.1 [103.3 |105.0 | 77.3 | 116.4| 81.5
Original

means 101.8 |102.0 | 80.6 [140.5 | 75.5100.4 {100.7 | 78.9 [134.3 | 58.6 |103.3 |105.1 | 74.7 |116.2| 97.2

advantages over LW. First, it can be used to solve
practical problems faced by breeders attempting to
select plants or animals for the next generation when
no estimates of economic weights are available. Even
if economic weights are available, in practice it is very
unlikely that they would maximize the derivative of
0y, XB,, with respect to B,, and to 6,, Second, if two
breeders are interested in improving, say, » traits, it is
very unlikely that they would assign the same weights.
Third, estimates of MESIMgy, have known statistical
sampling properties that are easy to evaluate.

On the other hand, both MESIMy and LW have
the main advantage of considering all possible types of
cross products, i.e., marker X marker, trait X trait in one
environment, trait X trait in different environments,
marker X trait in one environment, and marker X trait
in different environments. Therefore, these selection
indices implicitly consider the bi-genetic epistatic
interaction networks that could potentially affect the
expression of complex phenotypic traits of economic
importance, such as grain yield in plants or meat and
milk production in animals. Furthermore, MESIMy
and LW consider possible epistatic interaction networks
in complex inter loci interaction under different

environmental conditions. Thus, it is expected that
variability due to complicated interactions between
epistatic networks X environments could be captured
under the cross-products considered by MESIM,y, and
LW.

In general, results indicate that MESIM was better
than LT (LT1 and LT2), except for GY in environments
1 and 2, where LT2 was superior. Comparing RESIMy,
vs KNgw (KN1gw and KN25y), it is observed that
for 11 variables RESIMy, was better than KNy
(Table 2). In general, when comparing MESIMy,
MESIM, and RESIMy vs LW, LT, and KNgy, results
indicate that for 10 of the 15 traits the selection indices
based on singular value decomposition were more
efficient than LW, LT, and KNy

Since singular value decomposition is a natural
mathematical method for dimension reduction,
MESIMgy, should be useful for direct use in marker-
assisted recurrent selection. Although MESIMgy is
very straightforward, two difficulties are encountered
when this method is used: (1) it is not possible to
change the direction of the marker scores of the
individuals of the first eigenvector, and (2) when
applying MESIM;y, or LW, the user may have
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difficulty manipulating large variance-variance-
covariance matrices with hundreds of thousands of
cross products.

CONCLUSIONS

This research extended MESIM, RESIM (Ceron-
Rojas et al. 2008 a, b), the Kempthorne and Nordskog
(1959) restrictive selection index, and the Lange and
Whittaker (2001) molecular selection indices to the case
of a multitrait multienvironment genomewide molecular
marker selection index. Results from real data showed
that, in general, when several traits were selected in
various environments simultaneously, MESIMgy,
MESIM, and RESIMgy, increased the phenotypic
means over the mean of individuals selected by the LW,
LT, and KN,y selection indices. Results from simulated
data did show some advantages of MESIM,, MESIM,
and MESIMgy, over LW, LT, and KNgy, in terms of
average genetic gains for some trait-environment
combinations. However, LW, LT, and KNgy, were
sometimes superior to MESIMgyw, MESIM, and
RESIMGy-

One of the most important results of MESIMyy,
MESIM, and RESIMqy is that Buesme,, » Buesi -

and Bresmy,, are the maximum likelihood estimators

of Byesm,, » Buesm - and Bresm,, » whereas By, ,

ﬁps (estimator of the molecular LT selection index),

and BKNGW are estimators of B, Bps, and BKNGW,

whose sampling properties are difficult to evaluate.
MESIM;yw and RESIMgy can be considered a
generalization of MESIM and RESIM (Cerén-Rojas et
al. 2008 a, b) for the case where individuals are selected
based on their performance for traits measured in
several environments where additional random
variables are represented by molecular markers.
Similarly, LW and KNgy; are generalizations of the
genomewide selection index of Lange and Whittaker
(2001) and the Kempthorne and Nordskog (1959)
restrictive selection index, respectively. The sampling
properties of MESIMy, MESIM, and RESIM;, and
their selection responses are known, and their
estimators showed desirable statistical properties such
as consistency and asymptotic unbiasedness. MESIM
maximizes the selection response by maximizing the

square of the correlation between Y, and Z,, p;%_zs ,

which is the same as maximizing (8,,Wp )2 This
basic idea, used for developing a molecular selection
index based on eigenanalysis (Ceron-Rojas et al.
2008b), is valid for MESIMy, when molecular markers
are incorporated as additional traits.
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APPENDIX

Derivation of Matrices M and G,

The structure of the variance-covariance matrices
between molecular markers (MM), M, and the
variance-covariance between the code values of the m™
MM and the genotypic value of the ¢ trait that is
influenced by the additive effect of the q’h QTL (G,)
requires information on the recombination frequency
between MM and QTLs. Suppose that the order of any
three loci A, B, and C is ABC (the /oci can be MM or
QTLs), and that the recombination frequency is r,
between A and B, r, between B and C, and r between
A and C. There are two ways of obtaining the
recombination frequency between A and C:
(1) recombination between A and B and no
recombination between B and C; and (2) recombination
between B and C and no recombination between A and
B. Without interference, the recombination frequency
r can be written as

r=ri(l—-r)+{(-r)rn=r +r,-2rr, (A.l)

also known as the TROW formula (Bailey 1961).

Consider a doubled haploid progeny having
markers A and B with alleles 4, and 4,, B, and B,,
respectively; suppose that a QTL with alleles O, and
0, is located between the two markers. Denote « as
the additive value of genotype Q,0, and —« as the
additive value of genotype 0,0,. Let 1 be the code

value of genotypes 4,4, O,0,, and B,B,, and —1 the
code value of genotypes 4,4,, 0,0,, and B,B,.
Complete information on the doubled haploid progeny
is shown in Table A.1.

From Table A.1 it is possible to obtain the expected
value [E(X))], variances [Var(X})], covariances [Cov(X,,
X1, and correlations [Corr(X,, X)), i, j=1,2,3, of the
code values of the MM (X, and Xj;) and the QTL (X;).
The expected value of X; and the variance of X, are

1
E(X)) = 3 [ =r) =ry) + (1 =rpr

trry—r(l=r)+rd-r)
—(L=rpry—rry = —rpd —r)l =0
X)) =@ =r)(l =ry) + (1 =r)ry
+r(l—r)+rr=1
The expected values and variances of X, and Xj,
calculated in a similar manner, are, respectively, E(X,)
= E(X;) = 0, and Var(X,) = Var(X;) = 1. The covariance
between X, and X,, X, and X;, X, and Xj are,
respectively, Cov(X;, X;) = (1 —r)(1 —ry)) + (1 —r)r,
- =ry)—rr=1-2r, CovX,, X;) =1-2r,, and
Cov(X,, X3) = 1 — 2r. The correlation between X; and
Cov(X, X5)
\/Var(Xl)Var(Xz)

X, is Corr(X,, X;) = =1-2r,.The

other correlations can be calculated in a similar manner.
Note that if the additive QTL genotype values (o)

Table A.1. Genotypes of molecular markers (MM) and one QTL, expected genotypic frequencies, code values of the
genotypes of molecular marker A (X;), the QTL (X,) and molecular marker B (X;), and
the additive value of the genotype of the QTL (¢y;;) in a double haploid population

Code values Additive value of the
Genotypes of the MM Expected of the genotypes QTL genotype
and the QTL frequencies X, X, X; (aQTL)
4,4,0,0,8,8, (1 =rp —ry2 1 1 1 o
4,4,0,0,8,8, (1 =rpry2 1 1 -1 o
4,4,0,0,8,B, 2 1 -1 1 -o
4,4,0,0,8,B, ry(1=ry2 -1 1 1 o
4,4,0,0,8,8, ry(1=ry2 1 -1 -1 -
A4,4,0,0,B,B, (1 =rpry2 -1 -1 1 -o
4,4,0,0,8,B, 2 -1 1 -1 o
A4,4,0,0,B,B, (1 =rp —ry2 -1 -1 -1 -o
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are used instead of the code values of the genotypes of
the QTL(X,), then the covariance between the code
value of the first marker (X;) and &y, is Cov(X,, ofyr1)
= -rp)d=-rpoa+A -r)pr, a—r(l —ry)o—rnrno
=1 -2r)o

In addition, it is worth noting that the MM are
variables not affected by the environment or the
experimental error; thus the covariance between the
MM’s phenotypic values and code values is equal to

the covariance of the genotypic values with the code
values of the MM. Thus, suppose that p,;,,, = Z.im + E.
+ GE,, + &, where m" denotes the MM affecting the
i™ genotypic value of the #” trait in the e environment
(m=1,2,...,N,;t=1,2,...,N;i=1,2, ..., n),and
that X, is the m™ random variable that denotes the code
values of the m™ MM if E(E,) = E(GE,,) = E(&,;) = 0,
then Cov(p,;» X)) = CoV(g;4m» X,,)- This allows writing
matrices M, G, I', and Z as they were written in the
text.



